Microstructure, Hardness and Oxidation Resistance of CrN and CrAlN Coatings Synthesized by Multi-Arc Ion Plating Technology

2010 ◽  
Vol 168-170 ◽  
pp. 2430-2433 ◽  
Author(s):  
Zhi Hai Cai ◽  
Zhang Ping ◽  
Yue Lan Di

Approximately 2 μm thick CrN and CrAlN coatings were synthesized on silicon and spring steel substrate by multi-arc ion plating technology. The nanoindentation techniques, Auger electron spectroscopy (AES) analysis, scanning electron microscopy, X-ray diffraction and oxidation furnace were used to investigate the mechanical property, oxidation resistance and microstructure of the coatings. The XRD data showed that the CrN and CrAlN coatings exhibited B1 NaCl structure. Nanoindentation measurements showed that as-deposited CrN and CrAlN coatings exhibited a hardness of 19 and 30 GPa respectively. Compared with CrN coatings, the CrAlN composite coatings show much better oxidation resistance. And the oxidation resistance ability will enhance with increasing Al content, because A12O3 will form after oxidation in high temperature condition which could reduce the diffusivity ability of oxygen.

2012 ◽  
Vol 155-156 ◽  
pp. 579-584 ◽  
Author(s):  
Zhi Hai Cai ◽  
Yue Lan Di ◽  
Zhen Yang ◽  
Ping Zhang

The CrAlN composite coatings with different Al content are deposited on 65Mn steel substrate by multi-ion plating technology. The structure, surface morphology, composition and oxidation resistance of CrAlN composite coatings are tested by XRD, EDS, SEM and oxidation furnace, respectively. The experimental results show that the preferential growth orientation of the coatings was changed from CrN (111) to CrN (200) after the addition of Al element. And the surface roughness of CrAlN coatings increase gradually with increasing of Al content. Compared with CrN coatings, the CrAlN composite coatings show much better oxidation resistance. And the oxidation resistance ability will enhance with increasing Al content, because Al and Cr oxide form after oxidation in high temperature condition which could reduce the diffusivity ability of oxygen.


2011 ◽  
Vol 189-193 ◽  
pp. 743-746
Author(s):  
Jian Feng Li ◽  
Li Zhi Guo ◽  
Guo Qing Li

This article summarized depositing craft of the superficial coatings (Ni-Co-Cr-Al-Y-Si) on the Ti60 alloy (Ti-6.5Al-4.2Sn-4Zr-0.6Si) with arc ion plating technology and the oxidation behavior under 600~750 . The X-ray diffraction (XRD) and the scanning electronic microscope (SEM) were used to analyze the surface appearance, the structure and the ingredient conducts of non-coating Ti60 alloy. The contrast shows that the coatings have good protection to Ti60 alloy. The result indicated that the coating has the good oxidation resistance performance under 600°C , 650°C and 750°C . Coated Ti60 alloy oxidation resistance is markly improved. The circulation oxidation dynamics curve basically conforms to the parabola rule.


2015 ◽  
Vol 817 ◽  
pp. 421-425
Author(s):  
Kun Zhao ◽  
Wan Chang Sun ◽  
Chun Yu Miao ◽  
Hui Cai ◽  
Ju Mei Zhang ◽  
...  

Nickel matrix and Si3N4 micron particles were co-deposited on the aluminum alloy by pulse electro-deposition for high temperature performance. Meanwhile, the oxidation resistance was evaluated through the high temperature oxidation test. The phase structure, micrographs and components of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS) respectively. The results indicated that Si3N4 particles were uniformly distributed across the coating and there were no pores and cracks or other defects at the coating/substrate interface. Ni-Si3N4 composite coatings are characterized by pyramidal micro-crystallite structure. The thickness of Ni-Si3N4 composite coatings were up to 80 μm for 2h. The results also revealed that the Ni-Si3N4 composite coatings presented better oxidation resistance than the pure Ni coating and aluminum alloy at high temperature. After oxidation at 673 K for 8h, the oxidation resistance of Ni-Si3N4 composite coatings presented the improved oxidation resistance behavior compared to pure Ni and the aluminum alloy, respectively.


2014 ◽  
Vol 584-586 ◽  
pp. 1495-1499 ◽  
Author(s):  
Zhi Hai Cai ◽  
Hang Qin ◽  
Xiao Kun Du ◽  
Zhen Yang

A novel super hard coating system of (Ti,Cr,Al)N was synthesized by multi arc ion plating technology. The Metallic ratio of Cr, Ti, and Al was varied by adjusting the currents of different TiAl target. The CrTiAlN composite coatings with different chemical composition were deposited on the surface of 65Mn steels by multi-ion plating technology in a gas mixture of Ar+N2. The coatings were characterized by means of energy dispersive X-ray(EDX) analysis, X-ray diffractmetry(XRD), scanning electronic microscopy(SEM), microhardness tester respectively. The experimental results show that the deposition velocity of CrTiAlN coatings reached maximum value, about 72nm/min. And the surface morphology of CrAlTiN films are compact and dense. The main composition of CrTiAlN composite films is Cr、Ti、Al、N, with the mass percent of Cr 29.61%,Ti 21.42%,Al 14.88%,N 34.10%. And the cross-section morphology appears as fibrous columnar crystals structure. Compared with CrN coatings, the preferential growth orientation of CrAlTiN films was changed from CrN (111) to CrN (200) after the addition of Ti, Al element. When the TiAl target arc current was 50A, the hardness reached the maximum value, 35GPa.


2012 ◽  
Vol 534 ◽  
pp. 97-100
Author(s):  
C.L. Zhong ◽  
P.A. Wei ◽  
L.E. Luo

A series of Ti1-xAlxN coatings were deposited by reactive magnetron sputtering. The content, microstructure and surface morphology of the coatings were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of Al content on the microstructure and the oxidation resistance was studied. It was found that Ti1-xAlxN compound coating exhibits a cubic structure with (1 1 1) preferred orientations. The oxidation resistance obviously improves with the increase of Al content.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhisheng Li ◽  
Zongde Liu ◽  
Yongtian Wang ◽  
Shunv Liu ◽  
Runsen Jiang ◽  
...  

Fe-based amorphous composite coating was deposited on the carbon steel substrate by arc spraying and then remelted by a plasma remelting system, in order to improve the mechanical properties of the coatings. The composition, microstructure, and properties of the composite coating were analyzed by means of the metallographic microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and microhardness tester. The results showed that the amorphous composite coatings had more homogeneous and finer microstructure after the plasma remelting. The coating is metallurgically bonded with the substrate, and the hardness of the Fe-based amorphous composite coating is up to 1220 HV. The internal relationship between microhardness and microstructure has been discussed.


2018 ◽  
Vol 20 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Grzegorz Cieślak ◽  
Maria Trzaska

Abstract The paper presents results of studies of composite nickel/graphene coatings produced by electrodeposition method on a steel substrate. The method of producing composite coatings with nanocrystalline nickel matrix and dispersion phase in the form of graphene is presented. For comparative purposes, the study also includes nano-crystalline Ni coatings produced by electrochemical reduction without built-in graphene flakes. Graphene was characterized by Raman spectroscopy, transmission and scanning electron microscopes. Results of studies on the structure and morphology of Ni and Ni/graphene layers produced in a bath containing different amounts of graphene are presented. Material of the coatings was characterized by SEM, light microscopy, X-ray diffraction. The microhardness of the coatings was examined by Knoop measurements. The adhesion of the coatings with the substrate was tested using a scratchtester. The influence of graphene on the structure and properties of composite coatings deposited from a bath with different graphene contents was determined.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2253
Author(s):  
Channagiri Mohankumar Praveen Kumar ◽  
Manjunath Patel Gowdru Chandrashekarappa ◽  
Raviraj Mahabaleshwar Kulkarni ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin

Pure Zn (Zinc) and its Zn–WO3 (Zinc–Tungsten trioxide) composite coatings were deposited on mild steel specimens by applying the electrodeposition technique. Zn–WO3 composites were prepared for the concentration of 0.5 and 1.0 g/L of particles. The influence of WO3 particles on Zn deposition, the surface morphology of composite, and texture co-efficient were analyzed using a variety of techniques, such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) with Energy Dispersive X-ray analysis (EDX). Higher corrosion resistance and microhardness were observed on the Zn–WO3 composite (concentration of 1.0 g/L). The higher corrosion resistance and microhardness of 1.0 g/L Zn–WO3 nanocomposite coatings effectively protect the steel used for the manufacture of products, parts, or systems from chemical or electrochemical deterioration in industrial and marine ambient environments.


2010 ◽  
Vol 150-151 ◽  
pp. 1429-1432
Author(s):  
Gui Hua Li ◽  
Yong Zou ◽  
Zeng Da Zou ◽  
Xu Wei Dong

The Fe-based composite coating reinforced by in situ synthesized multiphase ceramic particles has been successfully prepared by laser cladding preplaced powder on 42CrMo steel. The experimental results of X-ray diffraction and scanning electron micrograph indicate the coating is consisted by γ-Fe phase and Fe-Cr fine phase which possesses the better oxidation resistance and corrosion resistance. In-situ synthesized V(C,N), Cr2B3 and Cr3C2 particulates which are uniformly distributed in the composite coatings. The wear test showed that these reinforcement particulates improved significantly wear resistance of the coatings. The wear mass loss of the coating is about one tenth of the 42CrMo substrate. Laser cladding layers have better oxidation resistance. The oxide scale of the coatings is one eighth of the substrate through 750 constant temperature for 120h oxidation.


2012 ◽  
Vol 531 ◽  
pp. 23-26
Author(s):  
C.L. Zhong ◽  
L.E. Luo

A series of Cr1-xAlxN coatings were deposited by reactive magnetron sputtering. The content, microstructure and surface morphology of the coatings were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of Al content on the microstructure, and the oxidation resistance and hardness was studied. It was found that Cr1-xAlxN compound coating exhibits a cubic structure with (1 1 1) preferred orientations. The oxidation resistance obviously improves with the increase of Al content.


Sign in / Sign up

Export Citation Format

Share Document