Kinetics of Monochloramine Decay in Model and Distribution System Waters

2011 ◽  
Vol 183-185 ◽  
pp. 834-838 ◽  
Author(s):  
Shao Gang Liu ◽  
Chen Feng Fan ◽  
Zhi Liang Zhu

The model of second-order reaction kinetics has been used to stimulate the monochloramine decay in model and distribution system waters by nonlinear fit. Several factors were investigated, including pH, bromide, nitrite concentrations in this system. The results showed that pH value was an important factor on the monochloramine decay rate, especially when pH was below 7.0. Presence of bromide ions had different impact under experimental conditions However, when pH was above 7.60, 0.1 mg/L concentration of bromide affect hardly the decay rate of mononchloramine. The results demonstrated that the second-order kinetic model could fit well the experimental results of monochloramine decay reaction under the conditions of bromide, and nitrite ion. Finally, the work presented here validates and extends this model for use in distribution systems under realistic chloramination conditions.

2014 ◽  
Vol 79 (4) ◽  
pp. 495-508 ◽  
Author(s):  
Anikó Kőnig-Péter ◽  
Béla Kocsis ◽  
Ferenc Kilár ◽  
Tímea Pernyeszi

Biosorption of Cd(II) and Pb(II) ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI) cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II) adsorption was found to be 5.0, and for Cd(II) 5.0 ? 6.0. The Pb(II) and Cd(II) bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II) and Cd(II) was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II) bioadsorption. In case of Cd(II) bioadsorption the adsorbed amount decreased with increasing temperature.


Clay Minerals ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 485-496 ◽  
Author(s):  
I. Hamadneh ◽  
R. Abu-Zurayk ◽  
B. Abu-Irmaileh ◽  
A. Bozeya ◽  
A. H. Al-Dujaili

AbstractA comparative study using bentonite (BT), hexadecyltrimethylammonium-modified bentonite (BT-HDTMA) and phenyl fatty hydroxamic acid-modified bentonite (BT-PFHA) as adsorbents for the removal of Pb(II) has been proposed. These adsorbents were characterized by X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy and surface area measurement. Cation exchange capacity was also determined in this study. The adsorbent capabilities for Pb(II) from aqueous solution were investigated, and the optimal experimental conditions including adsorption time, adsorbent dosage, the initial concentration of Pb(II), pH and temperature that might influence the adsorption performance were also investigated. The experimental equilibrium adsorption data were tested by four widely used two-parameter equations, the Langmuir, Freundlich, Dubinin- Radushkevich (D-R) and Temkin isotherms. The monolayer adsorption capacities of BT, BT-HDTMA and BT-PFHA for Pb(II) were 149.3, 227.3 and 256.4 mg/g, respectively. The experimental kinetic data were analysed by pseudo-first order, pseudo-second order and intraparticle diffusion kinetics models. The experimental data fitted very well with the pseudo-second order kinetic model. Determination of the thermodynamic parameters, ΔG, ΔH and ΔS showed the adsorption to be feasible, spontaneous and exothermic.


Author(s):  
Ayben Polat ◽  
Sukru Aslan

The sorption of Cu2+ ions from aqueous solutions by eggshell was investigated in a batch experimental system with respect to the temperature, initial Cu2+ concentrations, pH, and biosorbent doses. The adsorption equilibrium was well described by the Langmuir isotherm model with the maximum adsorption capacity of 5.05 mg Cu2+/g eggshell at 25 °C. The value of qe increased with increasing the temperature while also increases the release of Ca2+ and HCO−3 ions from the eggshell. The highest sorption of Cu onto the waste eggshell was determined at the initial pH value of 4.0. The results confirming that the adsorption reaction of Cu2+ on the eggshell was thought to be endothermic. A comparison of the kinetic models such as pseudo first and second-order kinetics, intraparticle diffusion, and Elovich on the sorption rate demonstrated that the system was best described by the pseudo second-order kinetic model.


2013 ◽  
Vol 368-370 ◽  
pp. 269-274
Author(s):  
Jin Chuan Gu ◽  
Zi Liang Mei ◽  
Chun Mei Wei ◽  
Hui Yan Wang ◽  
Wen Jun Lin ◽  
...  

The adsorption property of Cu2+ in aqueous solution by carbonaceous adsorbent made by sludge was studied. Under static conditions, the influences to the adsorption properties by the dosage of adsorbent, adsorption time, concentration of Cu2+, adsorption temperature, pH value, and other factors were systematically studied. The adsorption kinetics of the carbonaceous adsorbent was analyzed, and its adsorption properties were primarily discussed. The research results show that the carbonaceous adsorbent made by sludge has strong removal efficiency of Cu2+; the adsorption process complies with the Fruendlich adsorption isotherm; and the adsorption process can be represented by first-order kinetic model.


2021 ◽  
Vol 68 (4) ◽  
pp. 821-832
Author(s):  
Doina Humelnicu ◽  
Inga Zinicovscaia ◽  
Ionel Humelnicu ◽  
Maria Ignat

In this work we have presented the results obtained in the adsorption behavior of hydroxyapatite with different treatment towards aluminium ions from synthetic wastewaters. Experiments were performed in batch technique at different pH values, temperatures, sorbent dosage, contact time and initial aluminium concentration. The thermodynamic studies on the adsorption process of aluminium onto hydroxyapatite indicated that the process is spontaneous and endothermic. The Langmuir, Freundlich, Flory-Huggins, Dubinin-Radushkevich and Temkin equilibrium models were applied to the description of experimental data. The adsorption of aluminium follows the Langmuir adsorption isotherm. The kinetics of adsorption was evaluated using the pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The rate of aluminium adsorption was successfully described by a pseudo-second-order kinetic model. The obtained results indicated that hydroxyapatite treated with Pluronic P123 surfactant has a higher sorption capacity toward aluminium ions (117.65 mg g−1) than hydroxyapatite treated with Pluronic F127 surfactant (109.89 mg g−1) while untreated hydroxyapatite exhibited the lowest one (104.17 mg g−1).


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


Author(s):  
Atef A. A. Sweed ◽  
Ahmed A. M. Awad

This work aims to maximize the utilization of sugar cane cultivation and manufacture waste in Aswan Governorate, Egypt and turn it into biochar, which can be used to clean the environment from dangerous metals. Sugarcane organic wastes (filter cake, bagasse and sphere) biochars as waste bio-adsorbent materials were obtained using the pyrolysis at 350 and 700°C and 90 min residence time under limited oxygen conditions. Two batch trails were conducted to study the effects of biochar pH and shaking time on the adsorption of Pb ion from solution in precedence of soil and biochar. Models to study the kinetics of the adsorption process as pseudo-first-order and pseudo-second-order models were used.The results showed that the absorbed or precipitated (at high suspension pH) amount of Pb decreased in the order: soil treated with biochar bagasse pyrolysis at 350°C (BB350) > soil treated with biochar sphere pyrolysis at 350°C (SB350) > soil treated with biochar filter cake pyrolysis at 350°C (FB350) > soil only. At pH 9 maximum amounts of Pb of 1.794, 1.706 and 1.688 mg/g were adsorbed or precipitated on the soil treated with BB350, SB350 and FB350 respectively. However, Pb was maximum adsorbed or precipitated (1.33 mg/g) on the soil only at pH 8. The highest removal efficiency of Pb2+ from the solution was85% with treated the soil with SB350 while the lowest one was 55.5% occurred with the soil that was not treated with biochar at a shaking time of 80 minutes. The adsorption of Pb2+ by the soil in presence or absence biochars different fitted the pseudo second order kinetic model for all tested treatments (R2 ranged from 0.9901 for the soil treated with BB350 to 0.9994 for that treated with SB350).


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2017 ◽  
Vol 75 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Shengjiong Yang ◽  
Pengkang Jin ◽  
Xiaochang C. Wang ◽  
Qionghua Zhang ◽  
Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g−1 and a liberation capacity of 6.79 ± 0.77 mg g−1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


Sign in / Sign up

Export Citation Format

Share Document