Study on Vibration Grinding Deburring Finishing Process

2011 ◽  
Vol 211-212 ◽  
pp. 634-637
Author(s):  
Peng Zhang ◽  
Xing Yu Guo ◽  
Shao Fu Shan ◽  
Chen Ge Wu

It is difficult to remove for burr, especially for micro-hole burr, so the vibration grinding process is put forward and adopted to remove burrs. The mechanism of vibration grinding deburring is analyzed, and the experiments of micro-hole deburring are done with the technology of vibration grinding. From the results of the experiments, the conclusion can be draw that this technology can remove the burrs effectively. The vibration grinding process has the features of simple process system, low cost, easy operating. The Vibration grinding process technology method can also be used to remove burrs of other machining process. It has more application value in practice.

2011 ◽  
Vol 230-232 ◽  
pp. 544-548
Author(s):  
Peng Zhang ◽  
Xing Yu Guo ◽  
Zhi Guang Guan ◽  
Shao Fu Shan

In mechanical manufacturing, the traditional methods adopted for deburring and finishing is not only high labor intensity, but also difficult to reach the surface roughness and requirements. The vibration grinding deburring and finishing process method is put forward, and the removal of micro hole drilling burr and surface finishing experiments are carried. It can be seen from the experimental results that the vibration grinding process method can thoroughly remove burr and get the finishing effect. The vibration grinding system has the features of low cost and brief operation. The vibration grinding new process method has high practical value.


Author(s):  
K. (Subbu) Subramanian ◽  
Anant Jain ◽  
Vairamuthu Rajagopal ◽  
Brij M. Bhushan

Surface generation processes involve convergence of both machining and tribological interactions between the tool and the work. Abrasive finishing is one among the many families of surface generation processes, of which grinding process is a sub-set. In a typical grinding process, six different interactions can be identified at the grinding zone resulting in surface generation. Of these six interactions one is governed by the principles of machining, while the other five are governed by the principles of tribology. Thorough analysis of these interactions helps to characterize and understand the role of both tribological mechanisms and machining interactions in a typical grinding process. Moreover, these interactions offer the grinding process a flexibility which has resulted in a series of process innovations over decades transforming the grinding process into a high material removal rate machining process as well as an ultra-fine finishing process. Historical developments as well as recent process innovations are presented in this review paper along with the common frame work for their analysis using a set of microscopic interactions applicable in all these cases.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 512 ◽  
Author(s):  
Yung-Yi Wu ◽  
Dong-Yea Sheu

Due to their hardness and low tool wear, tungsten carbides are widely used in industrial applications, such as spray nozzles, wire drawing dies and spinning nozzles. However, there is no conventional machining process that is capable of fabricating micro-holes, slots and complicated shapes in tungsten carbide. In this study, a low-cost desktop micro electro-chemical machining (ECM) was developed to investigate the characteristics of tungsten carbide micro-hole drilling. The performance parameters of the machining conditions by desktop micro-ECM, such as the machining time, material removal rate, relative tool wear rate, surface quality and dimensional accuracy, were also investigated in this study. The experimental results demonstrate that the low-cost desktop micro-ECM could fabricate micro-holes in the tungsten cemented carbide (WC-Co) workpiece.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Dana Ashkenazi ◽  
Alexandra Inberg ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.


2014 ◽  
Vol 1025-1026 ◽  
pp. 628-632 ◽  
Author(s):  
Mohammad Zulafif Rahim ◽  
Song Lin Ding ◽  
John Mo

Electrical discharge grinding (EDG) is an advanced machining process and can be utilised to fabricate complex geometry of PCD tools. However, the PCD removal mechanism in this process is complicated. This study was carried out to understand the difference in PCD surface structure with difference EDG polarities. The study revealed that the finishing process with negative polarity is the reason for the porous structure on the surface. Further analysis on the chemical element and carbon structure were implemented as the morphological examination of the surface.


2021 ◽  
Vol 48 (8) ◽  
pp. 0802013
Author(s):  
阿占文 A Zhanwen ◽  
吴影 Wu Ying ◽  
肖宇 Xiao Yu ◽  
耿瑞琨 Geng Ruikun ◽  
邹贵生 Zou Guisheng

2011 ◽  
Vol 291-294 ◽  
pp. 1335-1338
Author(s):  
Da Biao Zhao

Graft copolymerization of acrylic acid(AA) on starch to prepare super absorbent resin (SAR) under microwave irradiation were investigated using N,N-methylene bis-acrylamide as crosslinker and potassium persulfate as initiator. The influences of the amount of initiator and crosslinker, neutralization degree of acrylic acid(AA), ratio of starch to AA, microwave power level and irradiation time on the distilled water absorption amount of resin were investigated. The results indicated that it only needed 4min under the microwave level of 231W to obtain the resin with the maximum absorption amount of 1110g×g-1, under the conditions that 0.3wt% initiator, 0.02wt% crosslinker, 60% neutralization degree of acrylic acid, the ratio of starch to acrylic acid of 0.25. Under microwave irradiation, the synthesis and drying of super absorbent resin could be completed at one step without nitrogen. Compared to conventional heating method, the methods had the striking advantages of short reaction time, simple process and low cost.


2013 ◽  
Vol 777 ◽  
pp. 192-195
Author(s):  
Lan Wu ◽  
Wen Liang Gao ◽  
Bao Yu Liu

A new biological deodorization technology which is used in Tianjin Jizhuangzi Sewage Plant was introduced in this paper. The geographical position of Jizhuangzi Wastewater Treatment Plant is special. The plant has been surrounded by the living area. The problem of odor to people has been serious until a new deodorization technology is used. It is a source deodorization technology used special filler through vaccination, induction and catalytic to removed the malodorous sources. A special microbial incubator is used to culture and proliferate effective deodorant microorganisms on activated sludge sewage in the biological pool of the plant and then the sludge containing deodorant microbial reflowed to the wastewater inlet. The malodorous substances in the water are removed through adsorption, cohesion, biotransformation degradation and so on by the deodorant microbial. The case indicates that this technology is effective in practice and good for popularization. And this technology with simple process showed significant effect compared with other deodorant technologies and was more secure and convenient to build and run with low cost.


2018 ◽  
Vol 1148 ◽  
pp. 103-108 ◽  
Author(s):  
N.V.S. Shankar ◽  
A. Gopi Chand ◽  
K. Hanumantha Rao ◽  
K. Prem Sai

During machining any material, vibrations play a major role in deciding the life of the cutting tool as well as machine tool. The magnitude acceleration of vibrations is directly proportional to the cutting forces. In other words, if we are able to measure the acceleration experienced by the tool during machining, we can get a sense of force. There are many commercially available, pre-calibrated accelerometer sensors available off the shelf. In the current work, an attempt has been made to measure vibrations using ADXL335 accelerometer. This accelerometer is interfaced to computer using Arduino. The measured values are then used to optimize the machining process. Experiments are performed on Brass. During machining, it is better to have lower acceleration values. Thus, the first objective of the work is to minimize the vibrations. Surface roughness is another major factor which criterion “lower is the better” applies. In order to optimize the values, a series of experiments are conducted with three factors, namely, tool type (2 levels), Depth of cut (3 levels) and Feed are considered (3 levels). Mixed level optimization is performed using Taguchi analysis with L18 orthogonal array. Detailed discussion of the parameters shall be given in the article.


Author(s):  
S. Devaraj ◽  
M. Ramakrishna ◽  
B. Singaravel

Metal Matrix Composite (MMC) has better mechanical properties and it is possible to produce near net shape. Aluminum-based MMC (Al-MMC) has challenges in terms of machinability studies and estimation of its optimum process parameters. Alternative cutting fluid research is a challenging area in machining. To avoid, existing hydrocarbon oil-based cutting fluid, textured inserts embedded with a solid lubricant are one of the alternative solutions. Micro hole textured inserts make a hole on the rake face of the cutting tool inserts. Texture includes various important design parameters namely hole diameter, hole depth and pitch between the holes. These optimum parameters influence the machining process. In this work, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to find the optimum design parameters (hole diameter, hole depth and pitch between holes) during turning of Al- MMC. The objective parameters considered are minimization of surface roughness, power consumption and tool flank wear. The optimum combination of these design parameters is obtained by the higher relative closeness value of the TOPSIS method. The result of the investigation revealed that these design parameters are important to obtain improved machining performance. Also, it is understood that the TOPSIS method has an appropriate procedure to solve multiple objective optimization problems in manufacturing industries.


Sign in / Sign up

Export Citation Format

Share Document