Effect of Repeated Induction Heating on Fatigue Crack Propagation in SAE 52100 Bearing Steel

2011 ◽  
Vol 217-218 ◽  
pp. 1266-1271 ◽  
Author(s):  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Katsuyuki Kida ◽  
Takashi Honda ◽  
Justyna Rozwadowska

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications when high wear and fatigue resistance are required. Refining the microstructure of steel improves its mechanical properties (e.g. toughness). In this work SAE 52100 specimens were exposed to repeated induction heating process and rotation bending tests were performed using single- and repeatedly heat-treated material in order to investigate the influence of this cyclic heat treatment on the mechanical properties of SAE 52100. In an attempt to determine the effect of the repeated induction heating and quenching on the material, we focused our observations on the internal fatigue “fisheye" cracks. It was noted that crack propagation was successfully halted by the refined microstructure in heat affected zone, therefore it can be concluded that repeated induction heating and quenching processes help to slow down the propagation of fisheye cracks in SAE52100 steel bars.

2013 ◽  
Vol 372 ◽  
pp. 270-272 ◽  
Author(s):  
Kazuaki Nakane ◽  
Katsuyuki Kida ◽  
Takashi Honda ◽  
Koshiro Mizobe ◽  
Edson Costa Santos

JIS SUJ2 (high carbon high strength bearing steel) heat treated by repeated quenching was investigated. The microstructure of the bearing traces was observed after heat treatment by laser confocal microscope. In this paper, by mathematical methods, we try to evaluate quantitatively this change of the structure. Homology is a branch of mathematics that allows quantitative describing characteristics of a figure by replacing the figure with algebra. Applying homology we can express the degree of the connection of the figure. Here we use homology to quantify the change of structures by repeated quenching. Keyword: Homology, Rolling contact fatigue, SUJ2, repeated quenching


2016 ◽  
Vol 867 ◽  
pp. 55-59
Author(s):  
Isamu Yoshida ◽  
Katsuya Yamamoto ◽  
Kenta Domura ◽  
Koshiro Mizobe ◽  
Katsuyuki Kida

Martensitic high-carbon, high-strength bearing steel is used for rolling contact applications when high wear and fatigue resistance are required. Due to its high fatigue strength, SUJ2 is not used for only bearings but for shafts. The objective of this work is a clarification of the relationship between quenching times and retained austenite amount of SUJ2 steel. It was found that repeatedly induction heating increased the retained austenite amount, but did not change the Vickers hardness.


2010 ◽  
Vol 654-656 ◽  
pp. 330-333 ◽  
Author(s):  
Takehide Senuma ◽  
Yoshito Takemoto

Hot stamping is an attractive method to produce extra high strength automotive components. In the conventional hot stamping, the furnace heating is employed and the heating rate is quite low. To improve the productivity of the hot stamping technology, the reduction of time for the heating process is required. In this study, the influence of the heating rate in a range up to 200°C/s, heating temperatures between 650°C and 950°C and cooling condition on microstructure and mechanical properties of 0.22% C -3%Mn steel has been investigated. The steel is a promising material for the highly productive new hot stamping technology because this steel transformed into martensite from austenite even at cooling in free air. The specimens heat-treated at a high heating rate and for short holding time at the heating temperature just above Ac3 show significantly fine martensite microstructure and a good strength-toughness balance. In this paper, the α→ γ transformation behavior and the γ→ α transformation behavior after inter-critical annealing are discussed to explain the evolution of the microstructures and mechanical properties.


2014 ◽  
Vol 893 ◽  
pp. 415-418 ◽  
Author(s):  
Koshiro Mizobe ◽  
Hitonobu Koike ◽  
Katsuyuki Kida

Martensitic high-carbon high-strength SAE 52100 bearing steel is one of the main alloys used as the principal alloys for rolling contact applications. We developed a novel repeated quenching method by induction heating in order to enhance the materials strength. The steel bar passed through the heated coil several times and finally quenched by cooling water. The rotating bending fatigue tests was done in order to investigate the fatigue strength of the steel bars. The heat affected zone (HAZ) was not expanded by the heat treatment however it was found that the thrice-induction-heating and once-quenching improved the fatigue strength. These two features indicated that the size of heat affected zone does not dominate the strength of heated-samples.


2015 ◽  
Vol 815 ◽  
pp. 643-648
Author(s):  
Yin Zhu ◽  
Jiong Xin Zhao

The effect of heat setting methods on the structures and mechanical properties of high strength polyvinyl alcohol (PVA) fibre is studied in this article. The microstructure and mechanical properties of heat treated PVA fibre is investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and single fibre electronic tensile strength tester. Results show that the heat setting method with constant tension is a good heat setting method which can largely enhance the tensile strength of PVA fibre. During the heat setting process, the mechanical properties of PVA fibre are greatly affected by the temperature, tension and setting time. When the temperature is 220°C, tension is 5cN/dtex and setting time is 90sec, the tensile strength of PVA fibre increases from 12.0cN/dtex to 16.4cN/dtex in compare with the PVA fibre without heat setting


Author(s):  
T. Makino ◽  
Y. Neishi ◽  
D. Shiozawa ◽  
Y. Neishi ◽  
D. Shiozawa ◽  
...  

 The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF) crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT) imaging were conducted. In the case of the defect with the 15 ?m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE) analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.


2012 ◽  
Vol 457-458 ◽  
pp. 1025-1031 ◽  
Author(s):  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Katsuyuki Kida ◽  
...  

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. Refining of prior austenite grain through repeated quenching is a procedure that can be used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched SAE 52100 steel and its fatigue strength under rotating bending were investigated. It was found that repeated furnace heating and quenching effectively refined the martensitic structure and increased the retained austenite content. Repeated quenching was found to improve the fatigue strength of SAE 52100.


2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


Sign in / Sign up

Export Citation Format

Share Document