Synthesis and Characterization of Hierarchical Zeolite with High Mechanical Stability

2011 ◽  
Vol 217-218 ◽  
pp. 368-371 ◽  
Author(s):  
Xu Ling ◽  
Rui Liu Zong ◽  
Bin Kan Qiu

A hierarchical zeolite was synthesized by self-assembly of ZSM-5 nano-crystals colloid and polystyrene spheres coated with cationic poly (diallyldimethylammonium chloride). The colloidial ZSM-5 nano-crystals were first bound onto the polyelectrolyte-modified PS by electrostatic attraction, followed by centrifugation to form PS/ZSM-5 close-packed composite. After being dried and calcined to remove the organic components, the hierarchical zeolite was obtained. The X-ray diffraction, scanning electron microscopy, transition electron microscopy and N2 adsorp-tion-desorption techniques were employed to characterize the hierarchical zeolite. The results showed that the material prepared by this method was well crystallized and possessed uniform ma-cropores interconnected in three dimensions through windows. Furthermore, the hierarchical zeolite was rather mechanically stable.

2000 ◽  
Vol 611 ◽  
Author(s):  
O. Gluschenkov ◽  
J. Benedict ◽  
L.A. Clevenger ◽  
P. DeHaven ◽  
C. Dziobkowski ◽  
...  

ABSTRACTMaterial interaction during integration of tungsten gate stack for 1 Gb DRAM was investigated by Transition Electron Microscopy (TEM), X-ray Diffraction analysis (XRD) and Auger Electron Spectroscopy (AES). During selective side-wall oxidation tungsten gate conductor undergoes a structural transformation. The transformation results in the reduction of tungsten crystal lattice spacing, re-crystallization of tungsten and/or growth of grains. During a highly selective oxidation process, a relatively small but noticeable amount of oxygen was incorporated into the tungsten layer. The incorporation of oxygen is attributed to the formation of a stable WO x (x<2) composite.


2010 ◽  
Vol 667-669 ◽  
pp. 737-741
Author(s):  
Jian Hua Jiang ◽  
Yi Ding ◽  
Ai Dang Shan

The effects of asymmetric and symmetric rolling at room temperature on mechanical properties and microstructure of the commercial purity Ti were investigated by means of mechanical test, optical microscopy, X-ray diffraction and transition electron microscopy. The results show that through asymmetric and symmetric rolling processes the ultimate tensile strength is substantially increased from 450 MPa to 960 MPa. Microstructure observation illustrates this variation in mechanical property is caused by the grain refinement and work hardening.


2009 ◽  
Vol 60-61 ◽  
pp. 16-21 ◽  
Author(s):  
Shi Bin Sun ◽  
Zeng Da Zou ◽  
Guang Hui Min

A simple sonochemical synthesis of tungsten trioxide hydrate with various morphologies has been developed by using tungsten hexachloride (WCl6) as precursor and water, ethanol and their mixture as solvent, followed by annealing in a tube furnace. The resulting products were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM) and differential thermal analysis (DTA). Results show that nanowhiskers emanating from the core of nanoparticles have been obtained with ethanol as solvent, and that nanoplates and nanosheets were formed when water and/or mixed ethanol and water was used as the solvent, respectively. The continuous changing supersaturation of tungsten trioxide may account for the formation of nanowhiskers. The formation of nanoplates or nanosheets may be associated with the selective adsorption of solvent molecules on the WO3 crystals. Due to a combination of the loss of chemical bonded water and crystal growth, the as-synthesized tungsten trioxide hydrate underwent apparent morphological evolution during thermal processing.


2013 ◽  
Vol 566 ◽  
pp. 285-288 ◽  
Author(s):  
Kenichi Mimura ◽  
Feng Dang ◽  
Kazumi Kato ◽  
Hiroaki Imai ◽  
Satoshi Wada ◽  
...  

Barium titanate (BT) and strontium titanate (ST) nanocubes which have been synthesized by hydrothermal method with surfactants were assembled in order directly on the substrates by using capillary-force-assisted self-assembly method. The ordered structures, crystallinity and orientation of the nanocubes were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning probe microscopy (SPM) and X-ray diffraction (XRD). The piezoresponse properties of the nanocubes ordering structures characterized by Piezoresponse Force Microscopy (PFM) seemed to depend on the constituents and their interface.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
M. Tavoosi ◽  
F. Karimzadeh ◽  
M. H. Enayati ◽  
H. S. Kim

The current study investigates the feasibility of fabricating amorphous Al80Fe10Ti5Ni5powders by mechanical alloying and consolidating them into bulk samples by a hot-pressing technique. As-milled and hot-pressed samples were examined by X-ray diffraction, scanning electron microscopy, transition electron microscopy, and differential scanning calorimetry. The results showed that milling of Al80Fe10Ti5Ni5powder for 40 h and hot pressing at 550°C under 600 MPa led to a fully dense bulk sample. During consolidation, an AlTi intermetallic phase with average crystallite size of 10 nm precipitates in the amorphous matrix.


2021 ◽  
Author(s):  
Anna Frank ◽  
Thomas Gänsler ◽  
Stefan Hieke ◽  
Simon Fleischmann ◽  
Samantha Husmann ◽  
...  

This work presents the synthesis of MoO2/MoS2 core/shell nanoparticles within a carbon nanotube network and their detailed electron microscopy investigation in up to three dimensions. The triple-hybrid core/shell material was...


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2013 ◽  
Vol 401-403 ◽  
pp. 663-666
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Zhong Guo Mu ◽  
Yun Bai

Polyaniline (PANI) nanotubes were synthesized separately using amino acetic acid (AA), ethylenediamine tetraacetic acid (EDTA), oxalic acid (OA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. SEM, TEM,FTIR and X-ray diffraction (XRD) and applying the 4 probes method characterized the morphology, structure and property of the product. It was found that nanotubes morphology were synthesized when the [Aci/[A ratio is 1:2.The room template conductivity of the products were studied.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


Sign in / Sign up

Export Citation Format

Share Document