Nano-Crystalline Structure and Strengthening Mechanism of Nano-Diamond/Ni Composite Coatings by Brush-Plating

2011 ◽  
Vol 239-242 ◽  
pp. 616-619
Author(s):  
Ying Li ◽  
Wen Jun Zou ◽  
Bian Xiao Li ◽  
Qi Ming Dong

Nano-diamond/Ni and Ni coatings were prepared by brush plating. SEM and XRD methods were applied to investigate the morphology, nano-crystalline structure and grain size of the coatings. The results show that the grain size of the brush coatings all is in nanometer scale. The surface morphology of the composite brush coatings is a finer and denser cauliflower-like structure. Meanwhile the reasons of formation nano-crystalline structure are the high over-potential, the discontinuous grain growth resulted from the reciprocating motion and friction between the plating pen and the work piece, the heterogeneous nucleation of the nano-diamond, and the point discharge effect. The nano-diamond as the second phases decreases the grain size of the coating and consequently increase the strength of the composite coatings largely.

2011 ◽  
Vol 80-81 ◽  
pp. 683-687 ◽  
Author(s):  
Ying Li ◽  
Bian Xiao Li ◽  
Wen Jun Zou

Nanodiamond/Ni and Ni coatings were fabricated via brush plating. Nanocrystalline structure of the composite coating was investigated by SEM and XRD. The results showed that the composite coatings are nanocrystalline structure. The hardness of the nanodiamond/Ni composite coating is higher greatly than that of Ni coating. At same time, the reasons of formation nanocrystalline were discussed, which include the nucleation rate with the increase of a high over-potential, the reciprocating motion between brush and work piece, the heterogeneous nucleation of nanodiamond. The nanodiamonds as second phases make grain finer. The nanodiamonds of core-shell structure play the important role in wear resistance and antifriction. So the wear resistance of the composite coatings is significantly higher than nickel coating’s.


2020 ◽  
Vol 993 ◽  
pp. 307-312
Author(s):  
Li Fu ◽  
Wen Xin Hu ◽  
Qi Chi Le ◽  
Zheng Jia

A new type of AZ31-1.3Ca-1.0Sm-0.3La alloy was obtained in this study by adding Ca, Sm and La to AZ31 alloy. Detailed analysis results on second phases showed that Al2Ca phases, Al2Sm phases with two kinds of morphologies formed in as-cast AZ31-1.3Ca-1.0Sm-0.3La alloy besides Mg17Al12 phases, and La atoms mainly dissolved in Al2Ca/Sm phases. The average grain size of as-cast AZ31-1.3Ca-1.0Sm-0.3La alloys was 212 μm and the grain sizes distributions were uniform. After the hot extrusion, the average grain size decreased to 5.4 μm and the grain sizes distributions were uneven. The base texture of as-extruded AZ31-1.3Ca-1.0Sm-0.3La alloy was strong, and the maximum density value was 3.25. The yield strength, ultimate tensile strength and elongation of as-extruded AZ31-1.3Ca-1.0Sm-0.3La alloy was 216 MPa, 280 MPa and 16% at RT, and 145 MPa, 188 MPa and 42% at 150°C, respectively, which are much higher than those of the common MB2 alloy both at the room temperature and 150 °C.


Author(s):  
Ernest L. Hall ◽  
Shyh-Chin Huang

Addition of interstitial elements to γ-TiAl alloys is currently being explored as a method for improving the properties of these alloys. Previous work in which a number of interstitial elements were studied showed that boron was particularly effective in refining the grain size in castings, and led to enhanced strength while maintaining reasonable ductility. Other investigators have shown that B in γ-TiAl alloys tends to promote the formation of TiB2 as a second phase. In this study, the microstructure of Bcontaining TiAl alloys was examined in detail in order to describe the mechanism by which B alters the structure and properties of these alloys.


Author(s):  
H. Lin ◽  
D. P. Pope

During a study of mechanical properties of recrystallized B-free Ni3Al single crystals, regularly spaced parallel traces within individual grains were discovered on the surfaces of thin recrystallized sheets, see Fig. 1. They appeared to be slip traces, but since we could not find similar observations in the literature, a series of experiments was performed to identify them. We will refer to them “traces”, because they contain some, if not all, of the properties of slip traces. A variety of techniques, including the Electron Backscattering Pattern (EBSP) method, was used to ascertain the composition, geometry, and crystallography of these traces. The effect of sample thickness on their formation was also investigated.In summary, these traces on the surface of recrystallized Ni3Al have the following properties:1.The chemistry and crystallographic orientation of the traces are the same as the bulk. No oxides or other second phases were observed.2.The traces are not grooves caused by thermal etching at previous locations of grain boundaries.3.The traces form after recrystallization (because the starting Ni3Al is a single crystal).4.For thicknesses between 50 μm and 720 μm, the density of the traces increases as the sample thickness decreases. Only one set of “protrusion-like” traces is visible in a given grain on the thicker samples, but multiple sets of “cliff-like” traces are visible on the thinner ones (See Fig. 1 and Fig. 2).5.They are linear and parallel to the traces of {111} planes on the surface, see Fig. 3.6.Some of the traces terminate within the interior of the grains, and the rest of them either terminate at or are continuous across grain boundaries. The portion of latter increases with decreasing thickness.7.The grain size decreases with decreasing thickness, the decrease is more pronounced when the grain size is comparable with the thickness, Fig. 4.8.Traces also formed during the recrystallization of cold-rolled polycrystalline Cu thin sheets, Fig. 5.


2012 ◽  
Vol 706-709 ◽  
pp. 1607-1611 ◽  
Author(s):  
J.D. Giallonardo ◽  
Uwe Erb ◽  
G. Palumbo ◽  
G.A. Botton ◽  
C. Andrei

Nanocrystalline metals are often produced in a state of stress which can adversely affect certain properties, e.g. corrosion resistance, wear, fatigue strength, etc. This stress is referred to as internal or “intrinsic” stress since it is not directly caused by applied loads. The structural causes of these stresses in nanocrystalline materials are not fully understood and are therefore an area of particular interest. The internal stresses of nanocrystalline Ni and Ni-16wt%Fe were measured and found to increase with the addition of iron. Characterization using HR-TEM revealed no signs of porosity, second phase particles, or a high density of dislocations. Both materials possessed well defined high-angle grain boundaries. The main structural difference between the two materials was found to be grain size and correspondingly, a decrease in grain size resulted in an increase in internal stress which supports the applicability of the coalescence theory. The current study also provides evidence to rule out the effect of voids (or porosity), dislocations, and second phases as possible causes of internal stress.


Author(s):  
Chandrasekhara Sastry Chebiyyam ◽  
Pradeep N ◽  
Shaik AM ◽  
Hafeezur Rahman A ◽  
Sandeep Patil

Abstract Nano composite coatings on HSLA ASTM A860 alloy, adds to the barrier efficacy by increase in the microhardness, wear and corrosion resistance of the substrate material. Additionally, reduction of delamination of the nano composite coating sample is ascertained. Ball milling is availed to curtail the coating samples (Al2O3/ZrO2) to nano size, for forming a electrodeposited product on the substrate layer. The curtailment in grain size was ascertained to be 17.62% in Ni-Al2O3/ZrO2 nano composite coating. During the deposition process, due to the presence of Al2O3/ZrO2 nano particles an increase in cathode efficiency is ascertained. An XRD analysis of the nano composite coating indicates a curtailment in grain size along with increase in the nucleation sites causing a surge in the growth of nano coating layer. In correlation to uncoated HSLA ASTM A36 alloy sample, a surge in compressive residual stress by 47.14%, reduction of waviness by 32.14% (AFM analysis), upsurge in microhardness by 67.77% is ascertained in Ni-Al2O3/ZrO2 nano composite coating. Furthermore, in nano coated Ni-Al2O3/ZrO2 composite a reduction is observed pertaining to weight loss and friction coefficients by 27.44% and 13% in correlation to plain uncoated alloy respectively. A morphology analysis after nano coating indicates, Ni-Al2O3/ZrO2 particles occupy the areas of micro holes, reducing the wide gaps and crevice points inside the matrix of the substrate, enacting as a physical barrier to upsurge the corrosion resistance by 67.72% in correlation to HSLA ASTM A860 base alloy.


Cutting of material is one of the important machining parameters for development of different fabricated model like shaft, bolts and screws etc. for a mass production the material need to cut in a multiple way or manner at a same time and this is to be perform on a power hack saw or multiple way hack saw machine which consume less time. This paper propose the design considerations and development of four way hacksaw machine which is able to cut four pieces of same or different material simultaneously with a very less time consumption. The motor is used as a source of power generation. Conversion of rotary motion of motor shaft into reciprocating motion is obtained by using eccentric cam. This machine can perform cutting operation on four different components by four ways at a time on different material simultaneously and therefore this machine becomes very useful in industry because of its efficiency, reliability and compatibility. This machine overcomes traditional hack saw machine which cuts material single work piece at particular time interval and also fulfills today’s need of mass production


Sign in / Sign up

Export Citation Format

Share Document