Experimental Study on Structural Properties Influencing on Shear Strength of Soft Clay

2011 ◽  
Vol 243-249 ◽  
pp. 2487-2490
Author(s):  
Jiang Feng Wang ◽  
Yong Le Li ◽  
Yan Bin Gao ◽  
Yong Xiang Yang

The direct shear tests were conducted with undisturbed and reconstituted soft clay, then the structural influence on shear strength was studied, and the laws were got. No matter shear strength of slow shear or consolidated quick shear on undisturbed and reconstituted soil have not peak values, strength line of reconstituted soil is a slash, but the shear strength line of undisturbed soil is obviously a broken line. The internal friction angle of undisturbed and reconstituted soil is basically the same. There are good linear relationship between internal friction angle and plastic index of clayey soil. The amplitude of internal friction angle of reconstituted soil decreasing with plastic index increasing is less than that of undisturbed soil. From wf-lgp curve can be seen, with the increasing of vertical stress, water content of shear failure decrease gradually, and linear correlation of each curve is very good.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110105
Author(s):  
Dequan Kong ◽  
Rong Wan ◽  
Chenkai Zhao ◽  
Jiumei Dai ◽  
Tijian Dong ◽  
...  

Particle gradation and water content are important factors affecting shear strength of soil. However, due to chemical cementation and molecular attraction, loess particles commonly stick together forming conglomerations. Till date, the superposition effect of water content and conglomeration gradation on loess shear strength has rarely been studied and undeniably requires further systematic explorations and development. In this study, loess samples were prepared with three conglomeration gradations and five water contents, and the direct shear tests were systematically performed. The shear strength of sample 1 (continuous conglomeration gradation) was found to be the best, followed by sample 2 (large size conglomerations), and sample 3 (small size conglomerations). The difference of samples’ shear strength decreased with increasing water content, and almost closed to zero when water content was 20%. The cohesion of samples first increased and then decreased with increasing water content, the maximum cohesion occurred at 10% water content. The internal friction angles decreased with increasing water content, and reached similar minimum values when the water content was 15%. The increased percentage values of cohesion and internal friction angle caused by conglomeration gradation are in the range of 33.2%–42.1% and 9.8%–32.5%, respectively. Finally, the empirical formulas for water content-cohesion and water content-internal friction angle of different conglomeration gradations samples were established, and the calculated values are in good agreement with test data. The effect of loess conglomeration gradation on shear strength decreased with increasing water content. When the water content was less than 15%, using a good conglomeration graduation could effectively improve loss shear strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jili Qu ◽  
Kun Xiong

Owing to its environment-friendly, economically available, and sustainable property, the palm fiber was attempted to improve the quality of Shanghai clayey soil together with lime. The direct shear tests (DST), ultrasonic pulse velocity tests (UPV), and the unconfined compressive tests (UCT) have been carried out on soils mixed with palm fiber and lime under 3 curing conditions of immersion in water, cyclic wetting-drying, and air curing at a series of contents of additives. The corresponding indexes of shear strength (τ), cohesion (c), internal friction angle (φ), initial shear modulus (G0), and unconfined compressive strength (qu) were obtained and analyzed. Results show that immersed-in-water environment is optimum for the formation of shear strength, initial shear modulus, cohesion, and unconfined compressive strength (UCS), while the air curing condition is the worst for admixture treated soil. Lime can increase G0, but palm fiber can slightly reduce G0. Lime has significant effect on increase of internal friction angle; on the contrary, palm fiber has only limited effect. c/G0 for any type of sample remains almost constant under different curing conditions. It demonstrates that c and G0 possess the comparative development trend under different curing environment.


2013 ◽  
Vol 448-453 ◽  
pp. 1284-1288 ◽  
Author(s):  
Juan Juan Wang ◽  
Jun Tao Deng ◽  
Song Lin Wu

Compacted loss widely used in the construction, such as embankment, dam, foundation backfill and other projects. Influenced by rainfall factors, the moisture content of compacted loess often vary so the shear strength will also changed. This paper studies the shear strength parameters of compacted loess through direct shear tests. In the dry density under the same conditions, the cohesion, internal friction angle of compacted loess decreases with the increase of water content. Summed cohesion and water content showed a quadratic parabola and internal friction angle and water content was also found quadratic parabola; further considering the effects of water content and dry density of compacted loess got shear strength formula. Shear strength formula.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


Author(s):  
Khelifa Harichane ◽  
Mohamed Ghrici ◽  
Said Kenai

Cohesive soils with a high plasticity index present difficulties in construction operations because they usually contain expansive clay minerals. However, the engineering properties of soils can be improved by different techniques. The aim of this paper is to study the effect of using lime, natural pozzolana or a combination of both lime and natural pozzolana on plasticity, compaction and shear strength of two clayey soils classified as CH and CL according to the unified soil classification system (USCS). The obtained results indicated that for CH class clay soil, the plasticity index decreased significantly for samples stabilized with lime. On the other hand, for the soil classified as CL class clay, a high decrease in the plasticity index value was observed for samples stabilized with natural pozzolana compared to those stabilized with lime. Also, both the cohesion and internal friction angle in lime added samples were demonstrated to increase with time. The combination of lime and natural pozzolana exhibits a significant effect on the enhancement of both the cohesion and  internal friction angle at later stages. The lime-natural pozzolana combination appears to produce higher shear strength parameters than lime or natural pozzolana used alone.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Guang-jin Wang ◽  
Xiang-yun Kong ◽  
Chun-he Yang

The researchers cannot control the composition and structure of coarse grained soil in the indoor experiment because the granular particles of different size have the characteristics of random distribution and no sorting. Therefore, on the basis of the laboratory tests with the coarse grained soil, the HHC-Granular model, which could simulate the no sorting and random distribution of different size particles in the coarse-grained soil, was developed by use of cellular automata method. Meanwhile, the triaxial numerical simulation experiments of coarse grained soil were finished with the different composition and structure soil, and the variation of shear strength was discussed. The results showed that the internal friction angle was likely to reduce with the increasing of gravel contents in the coarse-grained soil, but the mean internal friction angle significantly increased with the increment of gravel contents. It indicated that the gravel contents of shear bands were the major factor affecting the shear strength.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yue Qiang ◽  
Yulong Chen

In order to study the mechanical behavior of lime-treated soil under different loading rates, a series of monotonous three-axial compression tests are carried out under different lime contents, different loading rates, and different curing periods. The test results indicate that the lime content can significantly improve the mechanical behaviors of soil, such as shear strength and elastic modulus. On the other hand, three-axial compression test of soil is carried out under the loading rate ranging from 0.1%/min to 8%/min. Experimental results indicate that the mechanical behavior of lime-treated soil is sensitive to loading rate. Besides, the corresponding relationship between internal friction angle, cohesion, lime content, and loading rate is discussed. The results indicate that the loading rate almost has no influence on internal friction angle but significant influence on lime content. Cohesion is affected by lime content and loading rate. Shear strength, elastic modulus, and cohesion all increase with the increase of loading rate. Longer curing period is associated with greater parameter value. Shear strength, elastic modulus, and internal friction angle all firstly increase and then decrease when lime content increases, which all reach the maximum at 6%.


2012 ◽  
Vol 256-259 ◽  
pp. 358-361
Author(s):  
Xiang Yun Kong ◽  
Guang Jin Wang ◽  
Xiao Chao Zhou

Apparent particle size grading is the important characteristic of super-high bench dumping site, and the critical factors with the impact of its stability and disaster prevention are the fragmentation distribution and shear strength parameters of granular. With the copper mine dumping site which had the feature of apparent particle size grading, the thesis carried out the study of on-site particle size investigation and indoor laboratory. The particle-size distribution law with the changing of dumping-site height was analyzed and quantitative relationship between the fragmentation distribution and shear strength parameters of granular was discussed. The research results indicated that coarse-grain contents and maximum grain size were increased significantly according to the decreasing of dumping-site height, which showed that the dumping-site had the feature of apparent particle size grading. The coarse particle content in the grain size composition and internal friction angle φ of shear strength parameters increased with the obvious increment of the distribution value B. The relationship between distribution value B and the internal friction angle φ could be expressed by exponential function curve.


Author(s):  
Abbass Tavallali ◽  
Justine Mollaert

The available sand material for a breakwater foundation is mixed with shells. The shell percentage of the sand material is variable and percentages up to even 50% are observed. It is essential to evaluate the properties and the behaviour of the sand-shell mixture as this will form the improved breakwater foundation. In reality the backfilled sand of the breakwater foundation has different relative densities in different depths. In this study the mechanical properties of the sand-shell mixture for different relative densities are evaluated. For different relative densities of sand-shell mixture the direct shear tests and the consolidated undrained triaxial tests are carried out on some samples. The results of the experiments showed that the samples with higher relative density show a higher internal friction angle. However, for the samples with even low relative density, an internal friction angle of less than 32° is not observed. The volume variation of the samples with different relative densities are monitored. Samples with low relative density showed a contraction behaviour; resulting in an increase of the pore water pressure, a reduction of the effective strength and finally the samples become susceptible to liquefaction. While the samples with high relative density showed a dilatancy behaviour.


Sign in / Sign up

Export Citation Format

Share Document