The Seismic Experiment of Steel Frame with GRC Lath

2011 ◽  
Vol 255-260 ◽  
pp. 2483-2487
Author(s):  
Lin Feng Lu ◽  
Tao Zhang ◽  
Wen Qi Fang

Two 1:4 scale wall specimen was tested under cyclic load to determine its seismic behavior, the responses of the steel frame with GRC lath are studied such as the failure modes, hysteretic behavior, ductility, energy dissipation, and the experimental results were compared with the steel frame. The testing data analysis indicated that bearing capacity, lateral stiffness, ductility and energy dissipation of the steel frame with GRC light hollow lath are superior to the steel moment frame, the steel frame with GRC lath is an ideal lateral resistant system. The prolapse of GRC lath from the frame did not appear, so the steel frame with GRC lath could be better used in the earthquake zone. Due to the collapse of connection of lath with frame, the ductility coefficient of the system is generally between 2 and 3, it is less than requirement of the seismic design specifications, and therefore a suggestion is that the seismic design of steel frame with GRC lath can be according to non-filled wall frame structure.

2012 ◽  
Vol 166-169 ◽  
pp. 640-644
Author(s):  
Qian Zhang ◽  
Ya Feng Yue ◽  
Ergang Xiong

According to lots of documents previously studied, a seismic design method is put forward based on displacement for steel moment frame. This method is established in condition that the yield displacement of steel frame can be determined by its geometrical dimension; then the objective displacement (ultimate displacement) can be determined in light of performance level of the structure, and the corresponding coefficient of ductility can be obtained. Thereafter, the design base shear of steel frame structure can be calculated by the use of reduced elastic spectrum. Thus, the design of stiffness and capacity can be conducted on steel frame structure. The analysis of case study indicates that the displacement-based seismic design method addressed herein is of reasonable safety and reliability, and of operational convenience, which can still realize the seismic design of steel frame structure at different performance levels.


Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


2020 ◽  
Vol 18 (5) ◽  
pp. 2411-2430
Author(s):  
Long-He Xu ◽  
Yu-Sheng Sun ◽  
Xiao-Wei Fan ◽  
Zhong-Xian Li

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shuainan Zhai ◽  
Zuyin Zou ◽  
Zhanyuan Zhu ◽  
Zixing Zhang ◽  
Wei Liang ◽  
...  

In the past, earthquakes have caused significant damage to traditional masonry filler wall frame structures. To solve this problem, a new design scheme, the partition damping filler wall, is proposed in this paper to reduce the interaction between the filler wall and the frame structure. Low cyclic loading tests are carried out on the traditional and the new masonry filler wall frames. Besides, one full-scale-angled span layer frame without a filler wall is produced for comparison analysis. The mechanical performances of the different frames are studied, including the characteristics of the deformation failure modes, hysteretic curves, skeleton curves, rigidity degeneration, energy dissipation capacity, and the lateral displacement of the frame columns. The research results show that the partition damping filler wall can significantly decrease the diagonal bracing effect of the filler wall on the steel frame. Meanwhile, the setting of the low-strength mortar between the filler wall and steel frame and the arrangement of the damping layer can improve the stress distribution and delay the crack development of the wall. Furthermore, the stiffness degradation rate of the partition damping filler wall is obviously slower than that of the traditional masonry filler wall frame structure. In this paper, the partition damped wall-filled frame structure shows outstanding ductility and deformation capacity.


2019 ◽  
Vol 9 (7) ◽  
pp. 1456 ◽  
Author(s):  
Wenwei Yang ◽  
Ruhao Yan ◽  
Yaqi Suo ◽  
Guoqing Zhang ◽  
Bo Huang

Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint. In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated by two forms, which included the circular chord and braces, the square chord and circular braces, and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the surface of the chord of the joints without filling concrete, while the failure mode of the joints filled with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the compressive braces had a certain buckling deformation; The strengthening measures of concrete filled with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord. The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints strengthened with fly ash concrete, which was better than that of the K-joints strengthened with ordinary concrete. The results of ANSYS (a large general finite element analysis software developed by ANSYS Company in the United States) analysis agreed well with the experimental results.


2010 ◽  
Vol 163-167 ◽  
pp. 686-691
Author(s):  
Feng Xia Li

In practice most connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. So it is very necessary that studying the behavior of these semi-rigid connections under cyclic reversal loading. Two full-scale specimens of top-mounted-angle using H-section member had been conducted. The specimens were subjected to cyclic reversal loading simulating earthquake effects on a steel moment-resisting force. The objective of the work is to determine the behavior of these connections under cyclic reversal loading well into the inelastic range and to ascertain the effect of design parameters such as column flange stiffener, pre-tension of bolts and the top-mounted-angle steel flange thickness on the overall behavior. Observations were made concerning the response of the connections and its elements in terms of strength, stiffness and energy dissipation. Information on the design of these connections is presented. It is concluded that top-mounted-angle connections can possess the relative high stiffness, strength and excellent ductility as moment-resisting components in the seismic design of frames. Most of the input energy was dissipated in top-mounted-angle while the column participated a little in the energy dissipation process in the test. It is analyzed that the preload of bolt, contact pressure of the components and the other components’ mechanical properties by nonlinear analysis. These consequences are good reference for the engineering design.


Author(s):  
Michele Palermo ◽  
Vittoria Laghi ◽  
Stefano Silvestri ◽  
Giada Gasparini ◽  
Tomaso Trombetti

In the present work, a Performance-Based Seismic Design procedure applied to multi-storey frame structures with innovative hysteretic diagonal steel devices (called Crescent Shaped Braces or CSB) is introduced. CSBs are steel elements of peculiar geometrical shapes that can be adopted in frame buildings as enhanced hysteretic diagonal braces. Based on their "boomerang" configuration and placement inside the frame structure, they are characterized by a lateral stiffness uncoupled from the yield strength and, if properly inserted, by an overall symmetric hysteretic behavior with hardening response at large drifts, thus preventing from global structural instability due to second-order effects. The procedure here presented is intended to guide the structural engineer through all the steps of the design process, from the selection of the performance objectives to the preliminary sizing of the CSB devices, up to the final design configuration. The steps are described in detail through the development of an applicative example.


2013 ◽  
Vol 831 ◽  
pp. 476-480
Author(s):  
Shi Yan ◽  
Lu Yang ◽  
Xue Lei Jiang

An H-shaped steel frame in fire combined blast loading was numerically developed in this paper using finite element method by ANSYS thermal analysis. At the first step, a temperature field has been numerically analyzed. At the second step, each element of the steel frame was assigned different modulus of elasticity and yield stress based on the temperature analysis results. A dynamic simulation of the steel frame subjected to a blast load was analyzed under such a temperature field. The failure modes of the frame structure has been discussed. Finally, a same shape frame at the room temperature under the same blast load was simulated to compare with that at the elevated temperature.


2012 ◽  
Vol 517 ◽  
pp. 564-569
Author(s):  
Jin Song Fan ◽  
An Zhou ◽  
Li Hua Chen ◽  
Bing Kang Liu

Recycled concrete is a kind of new construction materials, and now received more and more attention from researchers and engineers, since its application in engineering projects can well cater to the increasing requirements of development for economic and environment-friendly society. Based on the pseudo static test of five recycled reinforcement concrete frame columns with different experimental axial compression ratios from 0.3 to 0.65, their failure modes, failure mechanism, hysteretic behavior, skeleton curves, bearing capacity, rigidity, ductility and energy dissipation capacity were discussed. Some possible influence factors and disciplines were also selected and analyzed. The study indicates that recycled reinforcement concrete frame columns in the case of relative low axial compression ratios usually exhibited similar and steady mechanical properties with common concrete columns. With the increase of axial compression ratio, its ductility and energy dissipation capacity are decreased and destruction forms tended to obvious brittle fracture, though its bearing capacity could slightly rise. The test results and analysis also manifest recycled concrete had expectative application potentials in most case.


2005 ◽  
Vol 293-294 ◽  
pp. 727-734
Author(s):  
José L. Zapico ◽  
María P. González

This article deals with a method for seismic damage identification in buildings with steel moment-frame structure. The damage identification is based on artificial neural networks and natural frequencies. A simplified finite element model is used to obtain the data needed for training the nets. The method is simulated on a four-storey building under conditions as close as possible to reality. The robustness of the method and its sensitivity to the variations of the mass with time and the influence of the data errors is addressed. The statistical analysis of the results is successful, but it reveals that the predictions are quite sensitive to the data errors.


Sign in / Sign up

Export Citation Format

Share Document