Google Earth as a Tool in Terrain Survey of Debris Flow Watershed

2011 ◽  
Vol 261-263 ◽  
pp. 1563-1566
Author(s):  
Lin Rong Xu ◽  
Zhi Man Su ◽  
Keizo Ugai ◽  
Fei Cai ◽  
Qing Qing Yang

Google Earth (GE) has powerful functions to view landscapes in fairly realistic three dimensions (3D) as well provides digital elevation model (DEM) data. A GE-based method in terrain surveying of debris flow watershed was elaborated, consisting of DEM data and related functions in GE. The method was employed in 9 debris flow watersheds along Ya-lu Expressway, Sichuan, China. It was proved to be able to get a similar result with traditional map method, especially in the debris flow watershed with a large area, such as more than 12 km2. Moreover, the GE method is a time-saving method and can extract some of the terrain parameters directly, which is obviously better than traditional method.

2019 ◽  
Vol 8 (4) ◽  
pp. 180 ◽  
Author(s):  
Jiang Wu ◽  
Junjie Fang ◽  
Jiangbo Tian

Digital elevation model (DEM) resolution is closely related to the degree of expression of real terrain, the extraction of terrain parameters, and the uncertainty of statistical models. Therefore, based on DEMs with various resolutions, this paper explores the representation and distinguishing ability of different roughness algorithms to measure terrain parameters. Fuyang, a district of Hangzhou City with various landform types, was selected as the research area. Slope, root mean squared height, vector deviation, and two-dimensional continuous wavelet transform were selected as four typical roughness algorithms. The resolutions used were 5, 10, 25, and 50 m DEM on the scale for plains, hills, and mountainous areas. The statistical criteria of effect size and entropy were used as indicators to evaluate and analyze the different roughness algorithms. The results show that in terms of these measures: (1) The expression ability of the SLOPE and root mean squared height (RMSH) algorithms is better than that of the vector deviation method, while the two-dimensional continuous wavelet method based on frequency analysis emphasizes the terrain information within a certain range. (2) The terrain distinguishing ability of the SLOPE and RMSH is not sensitive to the changes in resolution, with the other two algorithms varying with the changes in resolution.


2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


2011 ◽  
Vol 65 ◽  
pp. 214-217
Author(s):  
Yao Ge Wang ◽  
Peng Yuan Wang

Interpolation is the core problem of Digital Elevation Model (DEM). The Coons DEM model is better than bilinear interpolation and moving surface fitting. It is constructed by grid boundary curve, the curve interpolates by some adjoining grid points. Its spatial pattern of error is random in global area, there is no significant global spatial autocorrelation, but it is an increasing trend along with the terrain average gradient increases.There is significant local spatial autocorrelation, the spatial pattern of error converges strongly in local areas.


2019 ◽  
Vol 11 (9) ◽  
pp. 1096 ◽  
Author(s):  
Hiroyuki Miura

Rapid identification of affected areas and volumes in a large-scale debris flow disaster is important for early-stage recovery and debris management planning. This study introduces a methodology for fusion analysis of optical satellite images and digital elevation model (DEM) for simplified quantification of volumes in a debris flow event. The LiDAR data, the pre- and post-event Sentinel-2 images and the pre-event DEM in Hiroshima, Japan affected by the debris flow disaster on July 2018 are analyzed in this study. Erosion depth by the debris flows is empirically modeled from the pre- and post-event LiDAR-derived DEMs. Erosion areas are detected from the change detection of the satellite images and the DEM-based debris flow propagation analysis by providing predefined sources. The volumes and their pattern are estimated from the detected erosion areas by multiplying the empirical erosion depth. The result of the volume estimations show good agreement with the LiDAR-derived volumes.


2015 ◽  
Vol 14 (2) ◽  
pp. 37-46
Author(s):  
Karolína Hanzalová ◽  
Jaroslav Klokočník ◽  
Jan Kostelecký

<p>This paper deals with astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen. (1)  He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (3) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images were used to estimate the astronomical-solar-solstice orientation, together with terrestrial images from Salazar and Salazar (2). The digital elevation model is useful in the mountains, where we need the actual horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. We tested which astronomical phenomenon is connected with objects in Ollantaytambo. First, we focused on Temple of the Sun, also known the Wall of six monoliths.  We tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn´t connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation point. By Salazar and Salazar (2) we found observation point at the corner (east rectangle) of the pyramid by <em>Pacaritanpu,</em> down by the riverside. There is a line connecting the east rectangular “platform” at the river, going along the Inca road up to vicinity of the Temple of the Sun and then in the direction to the Inca face. Using a digital elevation model we found the astronomical azimuth, which is needed for confirm astronomical orientation of the Temple. So, finally we are able to demonstrate a possibility of the solar-solstice orientation in Ollantaytambo.</p>


2020 ◽  
Vol 12 (14) ◽  
pp. 2297 ◽  
Author(s):  
Mingyang Lv ◽  
Huadong Guo ◽  
Jin Yan ◽  
Kunpeng Wu ◽  
Guang Liu ◽  
...  

The Karakoram has had an overall slight positive glacier mass balance since the end of 20th century, which is anomalous given that most other regions in High Mountain Asia have had negative changes. A large number of advancing, retreating, and surging glaciers are heterogeneously mixed in the Karakoram increasing the difficulties and inaccuracies to identify glacier surges. We found two adjacent glaciers in the eastern Karakoram behaving differently from 1995 to 2019: one was surging and the other was advancing. In order to figure out the differences existing between them and the potential controls on surges in this region, we collected satellite images from Landsat series, ASTER, and Google Earth, along with two sets of digital elevation model. Utilizing visual interpretation, feature tracking of optical images, and differencing between digital elevation models, three major differences were observed: (1) the evolution profiles of the terminus positions occupied different change patterns; (2) the surging glacier experienced a dramatic fluctuation in the surface velocities during and after the event, while the advancing glacier flowed in a stable mode; and (3) surface elevation of the surging glacier decreased in the reservoir and increased in the receiving zone. However, the advancing glacier only had an obvious elevation increase over its terminus part. These differences can be regarded as standards for surge identification in mountain ranges. After combining the differences with regional meteorological conditions, we suggested that changes of thermal and hydrological conditions could play a role in the surge occurrence, in addition, geomorphological characteristics and increasing warming climate might also be part of it. This research strongly contributes to the literatures of glacial motion and glacier mass change in the eastern Karakoram through remote sensing.


2015 ◽  
Vol 15 (7) ◽  
pp. 1483-1492 ◽  
Author(s):  
K. Schraml ◽  
B. Thomschitz ◽  
B. W. McArdell ◽  
C. Graf ◽  
R. Kaitna

Abstract. Predicting potential deposition areas of future debris-flow events is important for engineering hazard assessment in alpine regions. To this end, numerical simulation models are commonly used tools. However, knowledge of appropriate model parameters is essential but often not available. In this study we use two numerical simulation models, RAMMS–DF (rapid mass movement system–debris-flow) and DAN3D (dynamic analysis of landslides in three dimensions), to back-calculate two well-documented debris-flow events in Austria and to compare the range and sensitivity of input parameters for the Voellmy flow model. All simulations are based on the same digital elevation models and similar boundary conditions. Our results show that observed deposition patterns are best matched with a parameter set of μ [–] and ξ [m s-2], ranging between 0.07 to 0.11 and 200 to 300 m s-2, respectively, for RAMMS–DF, and between 0.07 to 0.08 and 300 to 400 m s-2, respectively, for DAN3D. Sensitivity analysis shows a higher sensitivity of model parameters for the DAN3D model than for the RAMMS–DF model. This contributes to the evaluation of realistic model parameters for simulation of debris-flows in steep mountain catchments and highlights the sensitivity of the models.


2020 ◽  
Author(s):  
Ian Maddock ◽  
Josie Lynch

&lt;p&gt;Previous studies have established the ability to map river channel bathymetry accurately in clear water, shallow wadeable streams using imagery from Unmanned Aerial Vehicles (UAVs), Structure-from-Motion (SfM) photogrammetry and the application of refraction correction. However, because standard rotary-winged UAVs geotag imagery at a relatively low accuracy, there has been a need to use Ground Control Points (GCPs) to georeference the Digital Elevation Model (DEM). This is problematic in that is requires the operators to navigate around the site to place, survey and collect the GCPs which can be very time consuming and/or hazardous. A potential solution lies with the recent introduction of lower cost rotary-winged drones fitted with higher accuracy on-board RTK GPS sensors. These have raised the possibility of conducting UAV surveys with the use of very few or no GCPs across the survey site, saving time and removing the need to access all areas for GCP placement.&lt;/p&gt;&lt;p&gt;To test this possibility, we flew a 250 metre reach of the River Teme (max depth ~1m) on the English-Welsh border at 40m in July 2019 with two drones, i.e. a DJI Phantom 4 RTK UAV and base station and a DJI Phantom 4 PRO (non-rtk). The Phantom 4 RTK UAV was flown three times, i) using the flight program&amp;#8217;s 2D option (nadir only and one flight path) ii) using the 3D option (camera angled at 60&amp;#176; and flown in two directions) and iii) using the RTK off option and then using post-processing (PPK) to correct the image locations. 20 GCPs were placed across the site and their locations surveyed with a Trimble R8 dGPS and an additional 20 Independent Validation Points (IVPs) were surveyed along the floodplain for terrestrial validation points and 100 points within the channel were surveyed submerged area validation points.&lt;/p&gt;&lt;p&gt;Imagery was processed with Agisoft Metashape (v1.5.5). A total of 28 DEMs were produced using the imagery from the two drones, different flight paths and different combinations of numbers and location of GCPs. These included reducing the number of GCPs from 20, to 10, 5, 3, 1 and 0. When using three GCPs, DEMs were produced by having them i) spread throughout the reach and ii) clustered close to one another. The bed heights of the submerged locations were corrected using the simple refraction correction first used by Westaway et al (2001) and then compared to the measured heights in the field. Accuracy was quantified using linear regression.&lt;/p&gt;&lt;p&gt;The results of this analysis demonstrated the ability to obtain accurate surveys of bathymetry in depths upto 1m using a DJI Phantom 4 RTK UAV and base station and a significantly reduced number of GCPS, combined with the application of refraction correction. This study confirms that considerable time saving in terms of fieldwork can be gained from the use of an RTK rotary-winged drone and base station. This technology can also be beneficial for obtaining accurate survey data in locations where it may be unsafe or impossible to place GCPs due to the hazardous nature of the terrain.&lt;/p&gt;


2006 ◽  
Vol 63 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Elvio Giasson ◽  
Robin Thomas Clarke ◽  
Alberto Vasconcellos Inda Junior ◽  
Gustavo Henrique Merten ◽  
Carlos Gustavo Tornquist

Soil surveys are necessary sources of information for land use planning, but they are not always available. This study proposes the use of multiple logistic regressions on the prediction of occurrence of soil types based on reference areas. From a digitalized soil map and terrain parameters derived from the digital elevation model in ArcView environment, several sets of multiple logistic regressions were defined using statistical software Minitab, establishing relationship between explanatory terrain variables and soil types, using either the original legend or a simplified legend, and using or not stratification of the study area by drainage classes. Terrain parameters, such as elevation, distance to stream, flow accumulation, and topographic wetness index, were the variables that best explained soil distribution. Stratification by drainage classes did not have significant effect. Simplification of the original legend increased the accuracy of the method on predicting soil distribution.


2021 ◽  
Vol 7 (3) ◽  
pp. 279
Author(s):  
Muhammad Fatih Qodri ◽  
Noviardi Noviardi ◽  
Al Hussein Flowers Rizqi ◽  
Lindung Zalbuin Mase

Debris flow is a disaster occurring in cases where a sediment particle flows at high speed, down to the slope, and usually with high viscosity and speed. This disaster is very destructive and human life-threatening, especially in mountainous areas. As one of the world’s active volcanoes in the world, Rinjani had the capacity to produce over 3 million m3 volume material in the 2015 eruption alone. Therefore, this study proposes a numerical model analysis to predict the debris flow release area (erosion) and deposition, as well as the discharge, flow height, and velocity. The Digital Elevation Model (DEM) was analyzed in ArcGIS, to acquire the Cartesian coordinates and “hillshade” form. This was also used as a method to produce vulnerable areas in the Jangkok watershed. Meanwhile, the Rapid Mass Movement Simulation (RAMSS) numerical modeling was simulated using certain parameters including volume, friction, and density, derived from the DEM analysis results and assumptions from similar historical events considered as the best-fit rheology. In this study, the release volume was varied at 1,000,000 m3, 2,000,000 m3, and 3,000,000 m3, while the simulation results show movement, erosion, and debris flow deposition in Jangkok watershed. This study is bound to be very useful in mitigating debris flow as disaster anticipation and is also expected to increase community awareness, as well as provide a reference for structural requirements, as a debris flow prevention.


Sign in / Sign up

Export Citation Format

Share Document