Comparing Hysteretic Behavior of Flexible Piers with Different Stirrup Ratio and Slenderness Ratio

2011 ◽  
Vol 261-263 ◽  
pp. 576-580
Author(s):  
Xiao Jing Yuan ◽  
Fan Liu

Flexible piers have been widely used in bridge engineering due to its superior ductility. The stirrup ratio and slenderness ratio were deemed to have a most important impact on hysteretic behavior of them. Five flexible piers were made under static vertical loads and low cyclic horizontal reversed loads. The process of test was introduced and failure mechanism, hysteretic behavior, skeleton curve, ductility, energy dissipation capacity, and stiffness degeneration of flexible piers were analyzed. Experimental studies show that (1) Failure mode of specimen is bending failure and their ductility factor falls between 4.15 and 6.30; (2) displacement ductility factor improves with increasing of the stirrup ratio. Stirrup could greatly improve the capacity on ductility and energy dissipation, while it has little impact on the bearing capacity; (3) ultimate bearing capacity decline with the increase of slenderness ratio, however, when the slenderness ratio member is larger, the hysteresis curve is fuller and energy-dissipation is better.

2014 ◽  
Vol 578-579 ◽  
pp. 252-255
Author(s):  
Ya Feng Xu ◽  
Qian Chen ◽  
Pi Yuan Xu ◽  
Riyad S. Aboutaha

Composite concrete filled steel tubular (CFST) column is a new type of column having high ductility and high load-bearing capacity. In this paper, the finite element analysis software ABAQUS is used to study the seismic performance of 3D joint of composite CFST column and steel beam. The hysteretic curve and skeleton curve are obtained by changing the strength grade of the steel beam; calculate the energy dissipation ratio of the joint. The results show that the higher the beam’s steel strength the higher ultimate capacity of the joint in the constant axial load. But the full degree of hysteresis curve, energy dissipation and displacement ductility of the space joint decrease.


2015 ◽  
Vol 9 (1) ◽  
pp. 134-139
Author(s):  
Weidong Sun ◽  
Kang Li ◽  
Xinyu Niu

Through the pseudo-static test on the steel truss coupling beams with buckling-restrained brace, the bearing capacity, deformation capacity, hysteresis curve, skeleton curve, ductility, Energy Dissipation and stiffness degradation of such coupling beam are understood. The test results show that the steel truss coupling beams with buckling-restrained brace is characterized by bigger bearing capacity, higher ductility and good plastic energy dissipation capacity.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Daniel R. Teruna ◽  
Taksiah A. Majid ◽  
Bambang Budiono

This study aims to evaluate energy absorption capacity of hysteretic steel damper for earthquake protection of structures. These types of steel dampers are fabricated from mild steel plate with different geometrical shapes on the side part, namely, straight, concave, and convex shapes. The performance of the proposed device was verified experimentally by a series of tests under increasing in-plane cyclic load. The overall test results indicated that the proposed steel dampers have similar hysteretic curves, but the specimen with convex-shaped side not only showed stable hysteretic behavior but also showed excellent energy dissipation capabilities and ductility factor. Furthermore, the load-deformation relation of these steel dampers can be decomposed into three parts, namely, skeleton curve, Bauschinger part, and elastic unloading part. The skeleton curve is commonly used to obtain the main parameters, which describe the behavior of steel damper, namely, yield strength, elastic stiffness, and postyield stiffness ratio. Moreover, the effective stiffness, effective damping ratio, cumulative plastic strain energy, and cumulative ductility factor were also derived from the results. Finally, an approximation trilinear hysteretic model was developed based on skeleton curve obtained from experimental results.


2019 ◽  
Vol 14 (02) ◽  
pp. 2050007
Author(s):  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Shaohua Zhang ◽  
Gaodong Xu

In this study, two types of novel box connections were developed to connect precast concrete (PC) columns and to ensure load transfer integrity. Cyclic loading tests were conducted to investigate the seismic behavior of the PC columns with proposed connections as well as the feasibility and reliability of novel box connections. The failure mode, hysteretic behavior, bearing capacity, ductility, stiffness degradation and energy dissipation were obtained and discussed. The test results indicated that the all PC columns exhibited the ductile flexural failure mode and that the proposed connections could transfer the force effectively. The adoption of novel box connections could improve the deformation capacity and energy dissipation capacity of PC columns. A higher axial compression ratio could enhance the bearing capacity of PC column with proposed connection but would significantly deteriorate the ductility and energy dissipation capacity. Finite element models were developed and the feasibility of the models was verified by the comparison with the test results.


2020 ◽  
Vol 10 (7) ◽  
pp. 2609 ◽  
Author(s):  
Zongping Chen ◽  
Ji Zhou ◽  
Zhibin Li ◽  
Xinyue Wang ◽  
Xingyu Zhou

The application of recycled aggregate concrete (RAC) in concrete filled steel tubular (CFST) structures can eliminate the deterioration of concrete performance caused by the original defects of the recycled aggregate, which also provides an effective way for the recycling of waste concrete. In this paper, a test of a small scale model of a circular CFST column-reinforced concrete (RC) beam frame with RACs under low cyclic loading was presented in order to investigate its seismic behavior. The failure modes, plastic hinges sequence, hysteresis curve, skeleton curve, energy dissipation capacity, ductility and stiffness degeneration of the frame were presented and analyzed in detail. The test results show that the design method of the recycled aggregate concrete filled circular steel tube (RACFCST) frame complies with the seismic design requirements of a stronger joint followed by the stronger column and the weaker beam. The hysteresis curve of the frame is symmetrical, showing a relatively full shuttle shape; at the same time, the ductility coefficient of the frame is greater than 2.5, showing good deformation performance. In addition, when the frame is damaged, the displacement angle is greater than 1/38, and the equivalent damping ratios coefficient is 0.243, which indicates that the frame has excellent anti-collapse and energy dissipation abilities. In summary, the RACFCST frame has good seismic behavior, which can be applied to high-rise buildings in high-intensity seismic fortification areas.


2019 ◽  
Vol 9 (7) ◽  
pp. 1456 ◽  
Author(s):  
Wenwei Yang ◽  
Ruhao Yan ◽  
Yaqi Suo ◽  
Guoqing Zhang ◽  
Bo Huang

Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint. In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated by two forms, which included the circular chord and braces, the square chord and circular braces, and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the surface of the chord of the joints without filling concrete, while the failure mode of the joints filled with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the compressive braces had a certain buckling deformation; The strengthening measures of concrete filled with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord. The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints strengthened with fly ash concrete, which was better than that of the K-joints strengthened with ordinary concrete. The results of ANSYS (a large general finite element analysis software developed by ANSYS Company in the United States) analysis agreed well with the experimental results.


2012 ◽  
Vol 166-169 ◽  
pp. 881-884
Author(s):  
Bao Rong Huo ◽  
Xiang Dong Zhang

12 RC columns were made, including nine RC columns wrapped with BFRP, three RC columns without any reinforcement, to conduct the comparative study of axial compression. The result shows that the bearing capacity of the RC columns reinforced with the fibers increases obviously.The displacement ductility factor increases, but its increase rate becomes slow with increasing layers of fiber cloth, so the most economical layer number is 3. Based on the confinement mechanism of FRP cloth and the calculation formula of the bearing capacity for common RC column, the formula of the bearing capacity for reinforced RC column with BFRP cloth is proposed. The result of calculation basically tallies with the number in experiment.


2013 ◽  
Vol 717 ◽  
pp. 277-282
Author(s):  
Jin Chen ◽  
Shi Yong Jiang ◽  
Zhi Kun Lin ◽  
Ying Tao Li ◽  
Xiang Rong Zeng ◽  
...  

Through pseudo static test on three pieces of fiber reinforced plastics (FRP) transfer beam supported frame with three different reinforcement form, reinforcement ratio and the number of root reinforcement ,which are subjected to the vertical load and horizontal low cycle reciprocating load, the specimen fracture development law, yield mechanism, failure pattern, and bearing capacity, ductility, hysteresis characteristics and seismic performance are analyzed. The test results show that: yield mechanism and failure pattern of transfer beam supported frame equipped with fiber reinforced plastics reinforced bars are reasonable. The bearing capacity and deformation performance of transfer beam supported frame with top and bottom longitudinal bar replaced by FRP bars and symmetrical reinforced box are better than that of single upper replacement for FRP and lower replacement for FRP. The ductility performance of transfer beam supported frame equipped with fiber reinforced plastics bars is good, hysteresis curve is full, and have good seismic performance.


2012 ◽  
Vol 517 ◽  
pp. 564-569
Author(s):  
Jin Song Fan ◽  
An Zhou ◽  
Li Hua Chen ◽  
Bing Kang Liu

Recycled concrete is a kind of new construction materials, and now received more and more attention from researchers and engineers, since its application in engineering projects can well cater to the increasing requirements of development for economic and environment-friendly society. Based on the pseudo static test of five recycled reinforcement concrete frame columns with different experimental axial compression ratios from 0.3 to 0.65, their failure modes, failure mechanism, hysteretic behavior, skeleton curves, bearing capacity, rigidity, ductility and energy dissipation capacity were discussed. Some possible influence factors and disciplines were also selected and analyzed. The study indicates that recycled reinforcement concrete frame columns in the case of relative low axial compression ratios usually exhibited similar and steady mechanical properties with common concrete columns. With the increase of axial compression ratio, its ductility and energy dissipation capacity are decreased and destruction forms tended to obvious brittle fracture, though its bearing capacity could slightly rise. The test results and analysis also manifest recycled concrete had expectative application potentials in most case.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Yingchao Ma ◽  
Jinqing Jia

The seismic behaviors of steel reinforced ultrahigh strength concrete (SRUHSC) frames with different axial compression ratios and shear span ratios are experimentally studied through the reversed cyclic loading test of four specimens. The test results reveal that the seismic response of the frame is closely related to the failure process and failure mode of the columns. Based on the results, a systematic exploration is further conducted in terms of the characteristics of the skeleton curve, hysteresis curve, strength degradation, stiffness degradation, and energy dissipation capacity of the structure. The results indicate that as the axial compression ratio increases, and the shear span ratio decreases, the failure process of the entire structure and the weakening of the beam end are accelerated. Meanwhile, a change of the failure mode is also observed, accompanied by corresponding changes in the strength, stiffness, and energy dissipation capacity of the system.


Sign in / Sign up

Export Citation Format

Share Document