Experimental Study on the Mix Design and Fundamental Properties for Mixd Mortars Using Recycled Fine Aggregates

2011 ◽  
Vol 287-290 ◽  
pp. 943-948
Author(s):  
Wen Lan Zhao ◽  
Li Xin Liu ◽  
Tong Hao

This paper concerns the use of recycled fine concrete and clay brick aggregates to respectively globally replace natural fine aggregates (sand) in the production of mixed mortar. The fundamental properties such as the compressive strength and the shrinkage ratio of mixed mortar made of the recycled fine aggregates are tested and discussed in detail. The experimental results indicated that it is viable to produce mixed mortar using recycled fine concrete and clay brick aggregates, the compressive strength of mixed mortar made of recycled fine aggregates is lower than that of mixed mortar made of natural fine aggregates and the shrinkage ratio of mixed mortar made of recycled fine aggregates is larger, cured in natural environment.

2011 ◽  
Vol 320 ◽  
pp. 259-262
Author(s):  
Xu Ran ◽  
Zhe Ming Zhu ◽  
Hao Tang

The mechanical behavior of multi-cracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, based on the previous theoretical results of the failure criterion for brittle materials under compression, experiment study is implemented. The specimens are square plates and are made of cement, sand and water, and the cracks are made by using a very thin film (0.1 mm). The relations of material compressive strength versus crack spacing and the lateral confining stress are obtained from experimental results. The experimental results agree well with the failure criterion for brittle materials under compression, which indicates that the criterion is effective and applicable.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".


2013 ◽  
Vol 826 ◽  
pp. 187-191
Author(s):  
Qiang Li ◽  
Jin Huo ◽  
Zhi Jun Ma ◽  
Yuan Li ◽  
Jun Ce Wang ◽  
...  

The ultrafine powder composite admixture of fly ash and silica fume were researched in this article according to ultrafine powder fly ash and silica fume features.Through the different proportions of admixture strength test to determine the best ratio.The experimental results showed that appropriate admixture with 21.5%,12% of fly ash,8% of silica fume,1.5% of compound activator 28 days of flexural strength could be achieved 10.8Mpa,compressive strength could reach 54Mpa.


2013 ◽  
Vol 368-370 ◽  
pp. 1022-1026
Author(s):  
Ming Song Yi ◽  
Yan Qiu Xu ◽  
Ni Lou ◽  
Lan Ying Zhang ◽  
Guo Hui Yi

In order to solve the strength matching problem of grouted concrete and block in mortarless grouted masonry, the article adopts the ANSYS nonlinear simulation to establish different strength grade models. And the result shows that, when the strength matching relationship between the mortarless block and the concrete reaches fc/fb=1~2, the grouted concrete and block compressive strength are brought into full play without material waste. The result is close to fcu/fcb = 1.5~3.5 (gross area) from the literature[1]. It is clear that, when the compressive strength of the two is close, their joint work can exert the best effects. It fits the experimental results and provides reference to the application of mortarless grouted block.


2007 ◽  
Vol 353-358 ◽  
pp. 1346-1349
Author(s):  
Chuan Hui Huang ◽  
Shi Bo Wang ◽  
Li Guo Liu

This paper focuses on the effect of metal oxides on the mechanical properties of PA1010 composites, such as the tensile strength, compressive strength, shear strength and hardness. The experimental results show that the tensile strength of PA1010 composites filled with CuO and Al2O3 particles slightly decreases with the oxide contents increasing. However, the tensile strength of PA1010 composites filled with Fe3O4 particles increases, which has the average increment in tensile strength of 23.7% than the pure PA1010 materials. The results indicate that the compressive strength can be increased by adding CuO, Al2O3 and Fe3O4 particles into PA1010 polymer. The results exhibit that Fe3O4 particles have significant effects to increase the shear strength of PA1010 composites. However, Al2O3 particles filling reduce the shear strength of the composites.


2019 ◽  
Vol 9 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Ghania Sebki ◽  
Brahim Safi ◽  
Kahina Chahour

Abstract This work aims to study the possibility recycling of foundry sand wastes (FSW) as a cementations additive and fine aggregate in self-compacting mortars (SCM). For this, an experimental study was carried out to evaluate physical and mechanical properties of SCM. Firstly, sand is substituted by the foundry sand waste at dosages (0%, 10%, 30%, and 50%) by weight of the sand. Secondly cement is partially substituted by crushed foundry sand waste at different ratio (0%, 10%, 20%, 30%, and 50%) by weight of cement. The obtained results show that up to 50%, (FSW) can be used as fine aggregate for mortars without affecting the essential proprieties of mortar. However, beyond 50% of sand substitution, mortars lose their fluidity. The compressive strength of the mortars with 50% of cement substitution decreased compared to the control mortar. Value of the highest compressive strength recorded at 28 days, is of the order of 50 MPa for the mortar with 20% of cement substitution. Also, stress-strain curve show an acceptable mechanical behavior of FSW-based mortar at 50% of sand substitution.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012244
Author(s):  
Kuldeep Kumar ◽  
Manjeet Bansal ◽  
Rishav Garg ◽  
Rajni Garg

Abstract Porous concrete is an amalgamation of coarse aggregate, Portland cement, and water, which permits rainfall water to permeate through the surface and into the ground before it runs off. Porous concrete encompasses little or no fine aggregates and adequate cementitious fixative to coat the coarse aggregate while keeping the voids interconnected. IRC 44-2017 states that range of permeability for pervious concrete should be from 0.135 cm/second to 1.22 cm/second and array of compressive strength should be 5MPa - 25MPa. In this experimental study, two properties of no fine concrete namely compressive strength and porousness at the curing age of 7th & 28rd days has been targeted. Compressive strength and Infiltration tests were conducted on the pervious concrete of grade M10 and M15 by keeping variation of fine aggregates of 0% - 5%. We observed that fines aggregate help to rise the compressive strength of porous concrete but decrease the permeability. Thus, by careful optimization of the mix, pervious concrete can be obtained for suitable use in low strength load.


2020 ◽  
Vol 1 (41) ◽  
pp. 86-96
Author(s):  
Nhung Hong Tu ◽  
Cong Thanh Nguyen

Concrete is the primary material used in construction. The importance of concrete is shown through its strength criteria which are  indispensable in all structural designs of the engineers. This article is to determine the tensile strength of concrete according to the compressive strength through an experimental study for thestrength grade B15, B20, B25 of concrete. In this study, tensile and compressive strength of concrete were determined by tensile test and compression test on the same sample. The experimental results show that the tensile strength of concrete is much smaller than its compressive strength. For concrete at 28 days, the tensilestrength is 12,0% to 12,8% of the compressive strength. The reliability of the above compressive strength value is ensured by the standard compression test. The results of this study are recommended for practical testing of concrete strength.


Sign in / Sign up

Export Citation Format

Share Document