Effects of Polypropylene Fiber on Shrinkage of Masonry Cement Mortar

2011 ◽  
Vol 295-297 ◽  
pp. 1138-1141
Author(s):  
Na Liang ◽  
Xiao Yan Zhang ◽  
Li Sun ◽  
Feng Lan Li

Experiments were carried out to investigate the dry-shrinkage of masonry mortar affected by mass content of polypropylene fiber. The results show that proper content of polypropylene fiber is helpful to effectively reduce dry-shrinkage of mortar especially in early age, the reduction relates to water to cement ratio of mortar. Meanwhile, the relationships of water to cement ratio and content of polypropylene fiber in affecting dry-shrinkage of masonry mortar are analyzed, which can be as reference for selecting such optimum values as water to cement ratio and content of polypropylene fiber in practices.

2011 ◽  
Vol 287-290 ◽  
pp. 986-989
Author(s):  
Na Liang ◽  
Xiao Yan Zhang ◽  
Feng Lan Li

Experiments were carried out to investigate such basic properties as workability and strength of masonry cement mortar affected by mass content of polypropylene fiber. The results show that proper mass content of polypropylene fiber is helpful for effectively adjusting consistency and layering to bring better workability of fresh mortar, the relative higher bending strength of mortar can be got by admixing reasonable mass content of polypropylene fiber while slight improved compressive strength reaches. The relationships of water to cement ratio and mass content of polypropylene fiber in affecting these basic properties of masonry mortar are analyzed, which can be as reference for selecting optimum water to binder ratio and mass content of polypropylene fiber in practices.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 240
Author(s):  
Jianlan Chen ◽  
Jiandong Wang ◽  
Rui He ◽  
Huaizhu Shu ◽  
Chuanqing Fu

This study investigated the effective chloride diffusion coefficient of cement mortar with different water-to-cement ratio (w/c) under electrical accelerated migration measurement. The cumulative chloride concentration in anode cell solution and the cumulative chloride concentration drop in the cathode cell solution was measured by RCT measurement and the results were further used to calculate the chloride diffusion coefficient by Nordtest Build 355 method and Truc method. The influence of w/c on cement mortar’s chloride coefficient was investigated and the chloride diffusion coefficient under different determination methods were compared with other researchers’ work, a good consistency between this work’s results and literatures’ results was obtained. The results indicated that the increased w/c of cement mortar samples will have a higher chloride diffusion coefficient. The cumulative chloride concentration drop in the cathode cell solution will have deviation in early stage measurement (before 60 h) which will result in overestimation of the effective chloride diffusion coefficient.


2020 ◽  
Vol 230 ◽  
pp. 116929 ◽  
Author(s):  
Gloria M. Cuenca-Moyano ◽  
Jaime Martín-Pascual ◽  
María Martín-Morales ◽  
Ignacio Valverde-Palacios ◽  
Montserrat Zamorano

2019 ◽  
Vol 9 (1) ◽  
pp. 468-480 ◽  
Author(s):  
Warzer Qadir ◽  
Kawan Ghafor ◽  
Ahmed Mohammed

AbstractIn this study, the effect of lime content (L %) on the plastic properties such as water-cement ratio (w/c), setting times, flowability, compressive, flexural and bond strengths of cement mortar were investigated. Based on the information in the literature the amount of lime varied between 0 to 45% (by weight of cement). The experimental results were compared with the data collected from different research studies and quantified using two different models. The plastic and hardened properties of the cement mortar modified with different percentage of lime were conducted according to the ASTM and BS standards. Based on the literature data the water to cement ratio (w/c) ranged between 0.3-0.74 percent, the w/c of 0.5 was selected in this study. The compressive and flexural strengths of cement mortar modified with lime up to 28 days of curing were ranged between 3 MPa to 65 MPa and 2 MPa to 12 MPa respectively. The compressive, flexural and bond strengths of the cement mortar decreased with increasing lime content. Vipulanandan correlation model was used to correlate the relationship between lime with consistency, setting times, flowability and compressive strength of cement mortar. Compressive and flexural strengths of cement mortar modified with lime were quantified very well as a function of w/c, lime content and curing time using nonlinear relationship.


2014 ◽  
Vol 590 ◽  
pp. 312-315
Author(s):  
Wei Hong Xuan ◽  
Pan Xiu Wang ◽  
Yu Zhi Chen ◽  
Xiao Hong Chen

The dry shrinkage deformation of polypropylene fiber mortar was analyzed by ANSYS software and compared with experiment value in this paper. The error of the calculated and experimental results in the 14 days and 28 days are 7.8% and 10.5%. It can be found that the calculated results are in good agreement with test results. The results indicate that the dry shrinkage value of polypropylene fiber mortar is lower than ordinary mortar. Adding polypropylene fibers can inhibit the process of cracking and improve the fracture toughness of cement-based materials.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ailian Zhang ◽  
Linchun Zhang

Cement mortar prisms were prepared with three different cement types and different water-to-cement ratios plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, these samples were submerged in 2% magnesium sulfate solution at 5°C and the visual appearance and strength development for every mortar were measured at intervals up to 1 year. Samples selected from the surface of prisms after 1-year immersion were examined by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The results show that mortars with sulfate resisting Portland cement (SRC) or sulphoaluminate cement (SAC) underwent weaker degradation due to the thaumasite form of sulfate attack than mortars with ordinary Portland cement (OPC). A lower water-to-cement ratio leads to better resistance to the thaumasite form of sulfate attack of the cement mortar. A great deal of thaumasite or thaumasite-containing materials formed in the OPC mortar, and a trace of thaumasite can also be detected in SRC and SAC mortars. Therefore, the thaumasite form of sulfate attack can be alleviated but cannot be avoided by the use of SAC or SRC.


2020 ◽  
Vol 7 (3) ◽  
pp. 79-98
Author(s):  
Muhammed Abdullah ◽  
◽  
Serwan Rafiq ◽  

One promising insight to extended service life of cement mortar and improve it is durability by assimilating nano mechanism into the cement-based materials. Regardless of many research studies on the effect of nano alumina on the mechanical performance of cement mortar, there has not been a widespread study examining the effect of nano Al2O3, curing period (t), and water-to-cement ratio (w/c) on the compressive strength (σc) of cement mortar. Consequently, this study explores the subject matter which could be helpful for the building and construction field. In this study, the data collected on the compressive strength of the cement mortar modified with different percentages of nano alumina ranging from 0.5% to 13.5% (by dry weight of the cement) were gathered from the literature. A nonlinear modeling NLM and statistical data analysis were performed on above 500 assembled data. The w/c ratio of the cement mortar varied from 0.3% to 0.79%, and the compressive strength of cement mortar modified with nano alumina and cured for 1,7 and 28 up to 90 days leads to high strength ranged from (10 MPa to 68 MPa). The result of NLM showed that curing period has the highest effect on the compressive strength in combination with water to cement ratio and percentage of nano alumina replacement with a coefficient of determination (R2) of 0.85.


Sign in / Sign up

Export Citation Format

Share Document