Process Optimization of Cefradine/ Montmorillionite in Solution Intercalation

2011 ◽  
Vol 306-307 ◽  
pp. 831-834
Author(s):  
Yan Zhao Zhao ◽  
Wen Ji Guo ◽  
Lan Wang

One-factor-at-a-time design and orthogonal design were used in the experimental design to optimize the process of preparation for Cefradine /Montmorillionite composites in solution intercalation. Experimental results indicate that drug initial concentration was the most significant condition for optimal preparation of composites, intercalation time and reaction temperature were not so significant. In our paper, the maximum drug load occurred at reaction temperature of 60°C with the intercalation time of 2h when the drug concentration (mass ratio of cefradine to MMT) was 2:1.

2018 ◽  
Vol 115 (3) ◽  
pp. 312 ◽  
Author(s):  
Rowaid Al-khazraji ◽  
Yaqiong Li ◽  
Lifeng Zhang

Boron (B) removal by slag refining using CaO–SiO2–CaCl2 was investigated in metallurgical-grade silicon (MG-Si) and 75 wt% Si–Sn alloy. Experiments were conducted at 1500 °C for 15 min. The microstructure was characterized before and after refining. The effects of acid leaching, basicity, and slag/Si mass ratio on B removal were investigated. Experimental results showed that acid leaching had no effect on B removal from MG-Si but had a clear effect on the refined Si–Sn alloy after slag refining. The final B concentration was highly affected by the CaO/SiO2 mass ratio with minimum value, where the content of B was reduced from 18.36 ppmw to 5.5 ppmw at the CaO/SiO2 = 1.2 for MG-Si slag refining and from 18.36 ppmw to 3.7 ppmw at CaO/SiO2 = 1.5 for 75 wt% Si–Sn alloy. Increasing the slag mass ratio by 2:1 mass ratio also increased B removal efficiency by approximately 15–20% more than an increase by 1:1.


2012 ◽  
Vol 512-515 ◽  
pp. 2381-2385
Author(s):  
Xue Mei Zhang ◽  
Feng Xing Niu

We have successfully prepared a novel passivation Ni/HY catalyst by the technologies of macerate-precipitatio.The catalysts are comprised of two contents: HY as carrier, Ni as active component,and we put it into the process of preparating aromatic amines.The nature of the catalysts was discussed based on the characterization results of BET , IR , SEM , XRD , TEM ,TPD , XPS and TPR . The catalytic hydrogenation technology for 2,4-dinitrobenzene in liquid phase can be an attractive and elegant routine for production of 2,4-tolylenediamine. The catalytic activity is evaluated at 2.2 MPa, 90 °C, 750r/min, solvent with reaction materials mass ratio of 60, catalyst with reaction materials mass ratio of 0.1. In the catalytic test, The experimental results over the catalyst showed that 2,4-dinitrobenzene and 2,4-tolylenediamine conversion and selective of 99.88% and 99.16% were obtained respectively.It is found that the catalyst is highly dispersion, stable, and reusable. No obvious deactivation of the catalyst was observed after repeated using twelve times.


AIChE Journal ◽  
2009 ◽  
Vol 55 (2) ◽  
pp. 342-353 ◽  
Author(s):  
Paul J. Wissmann ◽  
Martha A. Grover

2011 ◽  
Vol 8 (1) ◽  
pp. 75-82
Author(s):  
P. K. Srivastava ◽  
S. S. Majhi ◽  
B. K. Sarkar

Moving wave front have been investigated in acrylic acid / benzoyl peroxide / N, N-dimethyl aniline system in a test tube at 30oC temperature. Dependence of front velocity on initial concentration of benzoyl peroxide, and effect of hydroquinone was determined. Consumption of acrylic acid and benzoyl peroxide have been found to decrease exponentially with respect to front position. The variation of reaction temperature with respect to front position at different initial concentration of benzoyl peroxide and different initial starting temperature have been investigated. It has been established that the reaction temperature increases and attains a maximum value by increasing both benzoyl peroxide and initial reaction temperature. The rate of polyacrylic acid chain propagation has been determined.


2021 ◽  
pp. 8-17
Author(s):  
Amer Ramadan ◽  

This paper reports on an in-depth examination of the impact of the backing filesystems to Docker performance in the context of Linux container-based virtualization. The experimental design was a 3x3x4 arrangement, i.e., we considered three different numbers of Docker containers, three filesystems (Ext4, XFS and Btrfs), and four application workloads related to Web server I/O activity, e-mail server I/O activity, file server I/O activity and random file access I/O activity, respectively. The experimental results indicate that Ext4 is the most optimal filesystem, among the considered filesystems, for the considered experimental settings. In addition, the XFS filesystem is not suitable for workloads that are dominated by synchronous random write components (e.g., characteristical for mail workload), while the Btrfs filesystem is not suitable for workloads dominated by random write and sequential write components (e.g., file server workload).


2013 ◽  
Vol 291-294 ◽  
pp. 383-389
Author(s):  
Jian Ping Sun ◽  
Jun Zhu

Various physical factors including particle size, pH, temperature and so on may influence the release of organic materials from dry dairy manure. The effect of these factors on release of protein and carbohydrate was investigated in this study using Box-Behnken Experimental Design with three factors (particle size, temperature and pH) at three levels. Test results suggested that particle size of 0.15-0.25 mm accounted for almost half of the dry manure particles and the optimum condition for release of protein and carbohydrate were pH 2, particle size 1.0-1.4 mm under reaction temperature of 90 oC, under which the protein and carbohydrate release rates could reach 1570.57 and 2813.29 mg l-1, respectively. The degree to which these factors affected organics release was in the order from high to low of temperature > particle size > pH.


2018 ◽  
Vol 24 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Muhammad Irfan ◽  
Muhammad Ahmad ◽  
Sadia Akhtar ◽  
Muhammad Khan ◽  
Muhammad Khan

The growing demand for niobium pentoxide, based on its use in separation processes, established its prominent significance as a leading candidate in the field of separation science and technology. This study reports the extraction of niobium pentoxide from pyrochlore ore occurring in Sillai Patai, KPK, Pakistan. It is difficult to recover niobium pentoxide from Pakistani ore due to its low concentration. Niobium pentoxide is an important material used in manufacturing industries for different purposes. Most of the commercially employed extraction processes are associated with serious environmental impacts and are not efficient in extracting niobium pentoxide from low concentration pyrochlore. Alkali potash has been used for separation and purification of niobium pentoxide because it is efficient and an environmentally friendly process. The leaching of niobium pentoxide is carried out in a batch reactor using alkali potash as a leachant. Various process parameters, including ore particle size, reaction temperature, reaction time and alkali to ore mass ratio, were examined statistically during the leaching process. It was observed that reaction temperature and ore particle size were more significant compared to other parameters. The maximum percent recovery of niobium pentoxide (95%) was obtained at 280?C in 90 min, while keeping the ore particle size 44 ?m and alkali to ore mass ratio of 7:1.


Author(s):  
Gladstone Christopher Jayakumar ◽  
K Phebe Aaron ◽  
K Krishnaraj

Leather is three-dimensional matrix possessing unique properties which makes it more comfortable for daily use. Garments made from leathers are preferred choice owing to their multifaceted properties as compared to textiles in the colder regions. In the present study, an attempt has been made to evaluate the influence of phenolic syntan and synthetic fatliquor on the sewability and physical properties of post tanned leathers. From the experimental results, it is observed that the concentration of phenolic syntan and fatliquor influences leather sewability. Optical microscopic images of leathers also show that they are more compact and tighter with higher percentage of syntan. The study provides an insight in understanding the optimum usage of post tanning chemicals for better sewing properties without affecting the leather matrix adversely.


2015 ◽  
Vol 754-755 ◽  
pp. 1107-1112
Author(s):  
Rozaini Abdullah ◽  
Jumat Salimon ◽  
Anis Atikah Ahmad

The aim of this study was to optimize the monoepoxidation process of linoleic acid obtained from Malaysian Jatropha curcas oil using central composite design (CCD). There were four independent variable factors had been studied which involved reaction temperature (X1), reaction time (X2), catalyst loading (X3) and H2O2 concentration (X4). Thirty experiments were carried out based on the experimental design responses obtained. The results showed that the optimum condition was obtained at catalyst loading of 0.11% (w/w) methyltrioxorhernium (VII) (MTO), H2O2 mole of 99%, reaction temperature of 58.41oC for 5 hours. The central composite design was proven to be simpler method, time saving and required less samples compared to the conventional method.


Sign in / Sign up

Export Citation Format

Share Document