Preliminary Study on Innovative Mechanical Design Method Classification

2011 ◽  
Vol 308-310 ◽  
pp. 364-367
Author(s):  
Yu Lian Cui ◽  
Bing Xi Zhang ◽  
Zhong Kang Song

Innovative mechanical design methods are categorized and analyzed briefly in this paper, which include the common used creative design methods for mechanical systems, mechanisms and mechanical structures. And the applications of these methods are illustrated with examples.

Author(s):  
H. V. Darbinyan

In well known conceptual design methods movement based working principles are considered to provide demanded key function of the future mechanism. Acceptable kinematical structures are searched within large number of topological diagrams generated on the base of original mechanism selected in accordance with functional demand. Further filtering of topological diagrams is leaving structures which are satisfactory for structural characteristics and additional functions. For many cases of mechanical design those concept design methods are not providing equal synthesis conditions for all functions, discriminating the rest of functions against the key function. The suggested novel concept design method [1] provides possibility of wide modifications of mechanism and function entities with mandatory dependence between sets of functions and mechanism’ various embodiments and implies application of identical design cycles for different stages of concept design. Some chapters of this method, as main idea, unified synthesis tools, modeling in concept design, graph and matrix based formalization of functions and mechanisms were presented in the earlier publications [2, 3]. Current study aims to formalize the concept design method itself, which facilitates presentation of the suggested design method and enables its formalized comparison with existing ones. Examples of product concept design are considered and resolved by existing methods and by the novel one, thus making obvious feature and performance efficiency evaluation.


Author(s):  
Warren Brown

This paper details further progress made in the PVRC project “Development of Improved Flange Design Method for the ASME VIII, Div.2 Rewrite Project” presented during the panel session on flange design at the 2006 PVP conference in Vancouver. The major areas of flange design improvement indicated by that project are examined and the suggested solutions for implementing the improved methods into the Code are discussed. Further analysis on aspects such as gasket creep and the use of leakage-based design has been conducted. Shortcomings in the proposed ASME flange design method (ASME BFJ) and current CEN flange design methods (EN-1591) are highlighted and methods for resolution of these issues are suggested.


Author(s):  
Tiancheng Zhou ◽  
Caihua Xiong ◽  
Juanjuan Zhang ◽  
Di Hu ◽  
Wenbin Chen ◽  
...  

Abstract Background Walking and running are the most common means of locomotion in human daily life. People have made advances in developing separate exoskeletons to reduce the metabolic rate of walking or running. However, the combined requirements of overcoming the fundamental biomechanical differences between the two gaits and minimizing the metabolic penalty of the exoskeleton mass make it challenging to develop an exoskeleton that can reduce the metabolic energy during both gaits. Here we show that the metabolic energy of both walking and running can be reduced by regulating the metabolic energy of hip flexion during the common energy consumption period of the two gaits using an unpowered hip exoskeleton. Methods We analyzed the metabolic rates, muscle activities and spatiotemporal parameters of 9 healthy subjects (mean ± s.t.d; 24.9 ± 3.7 years, 66.9 ± 8.7 kg, 1.76 ± 0.05 m) walking on a treadmill at a speed of 1.5 m s−1 and running at a speed of 2.5 m s−1 with different spring stiffnesses. After obtaining the optimal spring stiffness, we recruited the participants to walk and run with the assistance from a spring with optimal stiffness at different speeds to demonstrate the generality of the proposed approach. Results We found that the common optimal exoskeleton spring stiffness for walking and running was 83 Nm Rad−1, corresponding to 7.2% ± 1.2% (mean ± s.e.m, paired t-test p < 0.01) and 6.8% ± 1.0% (p < 0.01) metabolic reductions compared to walking and running without exoskeleton. The metabolic energy within the tested speed range can be reduced with the assistance except for low-speed walking (1.0 m s−1). Participants showed different changes in muscle activities with the assistance of the proposed exoskeleton. Conclusions This paper first demonstrates that the metabolic cost of walking and running can be reduced using an unpowered hip exoskeleton to regulate the metabolic energy of hip flexion. The design method based on analyzing the common energy consumption characteristics between gaits may inspire future exoskeletons that assist multiple gaits. The results of different changes in muscle activities provide new insight into human response to the same assistive principle for different gaits (walking and running).


Author(s):  
Jan Schumann ◽  
Ulrich Harbecke ◽  
Daniel Sahnen ◽  
Thomas Polklas ◽  
Peter Jeschke ◽  
...  

The subject of the presented paper is the validation of a design method for HP and IP steam turbine stages. Common design processes have been operating with simplified design methods in order to quickly obtain feasible stage designs. Therefore, inaccuracies due to assumptions in the underlying methods have to be accepted. The focus of this work is to quantify the inaccuracy of a simplified design method compared to 3D Computational Fluid Dynamics (CFD) simulations. Short computing time is very convenient in preliminary design; therefore, common design methods work with a large degree of simplification. The origin of the presented analysis is a mean line design process, dealing with repeating stage conditions. Two features of the preliminary design are the stage efficiency, based on loss correlations, and the mechanical strength, obtained by using the beam theory. Due to these simplifications, only a few input parameters are necessary to define the primal stage geometry and hence, the optimal design can easily be found. In addition, by using an implemented law to take the radial equilibrium into account, the appropriate twist of the blading can be defined. However, in comparison to the real radial distribution of flow angles, this method implies inaccuracies, especially in regions of secondary flow. In these regions, twisted blades, developed by using the simplified radial equilibrium, will be exposed to a three-dimensional flow, which is not considered in the design process. The analyzed design cases show that discrepancies at the hub and shroud section do exist, but have minor effects. Even the shroud section, with its thinner leading-edge, is not vulnerable to these unanticipated flow angles.


1989 ◽  
Vol 111 (4) ◽  
pp. 837-843 ◽  
Author(s):  
H. Jaber ◽  
R. L. Webb

This paper develops the effectiveness-NTU design method for cooling towers. The definitions for effectiveness and NTU are totally consistent with the fundamental definitions used in heat exchanger design. Sample calculations are presented for counter and crossflow cooling towers. Using the proper definitions, a person competent in heat exchanger design can easily use the same basic method to design a cooling tower of counter, cross, or parallel flow configuration. The problems associated with the curvature of the saturated air enthalpy line are also treated. A “one-increment” design ignores the effect of this curvature. Increased precision can be obtained by dividing the cooling range into two or more increments. The standard effectiveness-NTU method is then used for each of the increments. Calculations are presented to define the error associated with different numbers of increments. This defines the number of increments required to attain a desired degree of precision. The authors also summarize the LMED method introduced by Berman, and show that this is totally consistent with the effectiveness-NTU method. Hence, using proper and consistent terms, heat exchanger designers are shown how to use either the standard LMED or effectiveness-NTU design methods to design cooling towers.


2016 ◽  
Vol 30 (11) ◽  
pp. 1391-1406 ◽  
Author(s):  
Licheng Zhou ◽  
Yang Ju ◽  
Yongmao Pei ◽  
Daining Fang

Author(s):  
G. K. Ananthasuresh ◽  
Sridhar Kota

Abstract A great majority of the available micro devices and systems use compliant (or flexible) structures and mechanisms. This trend in design takes advantage of micromachining techniques while satisfying the constraints imposed by them. By citing relevant literature, this article briefly notes the influence of compliance on the mechanical design and analysis of Micro-Electro-Mechanical Systems (MEMS).


Author(s):  
Kikuo Fujita ◽  
Shinsuke Akagi

Abstract A Framework of computational design method and model is proposed for layout and geometry design of complicated mechanical systems, which is named “configuration network and its viewing control”. In the method, a design object is represented with a set of declarative relationships among various elements of a system, that is, configurations, which is gradually extended from schematic structure to exact layout and geometry through design process. Since a whole of such configurations forms a too complicated network to compute all together, how to view subparts is controlled based on levels of granularity and width of scope range. Such a configuration network is made to grow and refined through embodying geometry and layout corresponding to a focused subpart with a numerical optimization procedure. The framework has also an ability to flexibly integrate with engineering analysis. Moreover, a design system is implemented with an object-oriented programming technique, and it is applied to a design problem of air conditioner units in order to show the validity and effectiveness of the framework.


Sign in / Sign up

Export Citation Format

Share Document