Electronic Structures and Thermoelectric Properties of NaCo2O4 Thermoelectric Material

2011 ◽  
Vol 317-319 ◽  
pp. 2051-2055 ◽  
Author(s):  
Qiu Hua Ma ◽  
Qing Wei Wang ◽  
Peng Xian Lu ◽  
Yong Gai Hou

The electronic structures of thermoelectric material NaCo2O4 were studied by the first-principles calculations with plane-wave pseudopotential method and generalized approximation (GGA) based on density functional theory (DFT). On the basis of calculation for electronic structures, thermoelectric properties of NaCo2O4 were also investigated in this paper. The reasons for large thermoelectric potential are large effective mass of holes at the top of valence band and 6μB net spin magnetic moment. While high electrical conductivity should be attributed to small effective mass of electrons at the bottom of conduction band, large carrier concentration near the Fermi level and narrowed energy gap. In addition, covalent bond between Co atom and O atom promotes carrier mobility and thus benefits to electrical conductivity. Na1 and Na2 have different effects on the NaCo2O4. Na1 provides local state electrons and yet Na2 provides itinerant-electrons which play important role to strongly correlated system.

2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


2015 ◽  
Vol 748 ◽  
pp. 197-200
Author(s):  
Mei Juan Cao ◽  
Zhi Cheng Sun ◽  
Lu Hai Li ◽  
Yuan Bin She ◽  
Zuo Lin Yang ◽  
...  

A series of porphyrin sensitizers with different central metal ions (PMn, PFe, PCo, PNi, PCu, and PZn) have been studied based on density functional theory (DFT). The geometric structure of the dyes was optimized and the frontier molecular orbital were calculated. The result shows that the LUMO levels of PFe, PNi and PZn were much lower than that of PMn, PCo and PCu, which suggest a lower energy barrier for electron transfer from the donor to the acceptor tunneling. Furthermore, the energy gap of HOMO and LUMO for PFe was only 0.81 eV, it indicates a significant red shift of the absorption spectrum. The LUMO of PMn, PNi, PCu and PZn were mainly decocalized on the porphyrin core and the bridge moiety, which was beneficial to electronic transport.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750036
Author(s):  
Yujie Bai ◽  
Qinfang Zhang ◽  
Fubao Zheng ◽  
Yun Yang ◽  
Qiangqiang Meng ◽  
...  

Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 84-93
Author(s):  
M. I. Terebinska ◽  
O. I. Tkachuk ◽  
A. M. Datsyuk ◽  
O. V. Filonenko ◽  
V. V. Lobanov

By the method of density functional theory (B3LYP, 6-31G **) the electronic structures of poly 3,4-ethylenedioxythiophene containing 12 links in charge states 0, +1, +2, +3 and +4 were calculated. It is shown that the oligomer of 12 units is sufficient to reflect the properties of the conductive polymer. To estimate the probability of electron density movement along the polymer chain, the width of the energy gap between NOMO and LUMO was calculated. It is shown that the molecules of oligomers EDOT and SS do not remain parallel to each other after polymerization, but rather, with increasing chain length, the latter gradually bends around the anionic unit SS; the charge distribution in the EDOT and SS oligomer complexes indicates the presence of two separated polarons at the two ends of the chain, and the asymmetry in the charge distribution also implies the presence of a curved spiral structure of the formed complex.


2021 ◽  
Vol 6 (3) ◽  
pp. 107-115
Author(s):  
Fares A. Yasseen ◽  
Faeq A. Al-Temimei

In the present work, geometries, electronic structures, photovoltaic and optical properties have been carried out on a series of structures formation of phthalocyanine and Titanylphthalocyanine dyes, which are replaced by several subgroup. A density functional theory (DFT) approach together with hybrid function (B3LYP) at SDD basis set was used for the ground state properties in the gas phase. The time-dependent density functional theory (TD-DFT)/ B3LYP was used to investigate the excitation properties of new dyes and analyzed the trends in their optical and redox characteristics. Theoretical principles of HOMO and LUMO energy levels of dyes is requisite in analyzing organic solar cells, thus, HOMO, LUMO levels, open circuit voltage, energy gap, light harvestings efficiency, electron regeneration and electron injection have been calculated and discussed. The outcome of the efficiency, the considered dyes explain absorption energy and wavelength properties that correspond to the solar spectrum requirements. According to results, all the considered materials have a good property and possibility of electron injection procedure from the dyes to conduction band of TiO2, PC60BM or PC60BM. As a result, the molecular changes affect the electronic properties of dye molecules for solar cells. Also, a study of new dyes sensitizers showed that designed materials will be excellent sensitizers. Theoretical designing will prae a way for experimentalists to synthesize the efficient sensitizers for solar cells clearer.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4707
Author(s):  
Hailong Yang ◽  
Pascal Boulet ◽  
Marie-Christine Record

By combining density functional theory, quantum theory of atoms in molecules and transport properties calculations, we evaluated the thermoelectric properties of Sb-S system compounds and shed light on their relationships with electronic structures. The results show that, for Sb2S3, the large density of states (DOS) variation induces a large Seebeck coefficient. Taking into account the long-range weak bonds distribution, Sb2S3 should exhibit low lattice thermal conductivity. Therefore, Sb2S3 is promising for thermoelectric applications. The insertion of Be atoms into the Sb2S3 interstitial sites demonstrates the electrical properties and Seebeck coefficient anisotropy and sheds light on the understanding of the role of quasi-one-dimensional structure in the electron transport. The large interstitial sites existing in SbS2 are at the origin of phonons anharmonicity which counteracts the thermal transport. The introduction of Zn and Ga atoms into these interstitial sites could result in an enhancement of all the thermoelectric properties.


2017 ◽  
Vol 16 (06) ◽  
pp. 1750054 ◽  
Author(s):  
Xiao-Fang Su ◽  
Bo Zhu ◽  
Cai-Xia Wu ◽  
Li-Kai Yan ◽  
Zhong-Min Su

The geometrical and electronic structures of [M6O[Formula: see text]][Formula: see text] (M [Formula: see text] Mo, W, [Formula: see text]; M [Formula: see text] V, Nb, Ta, [Formula: see text]) and their derivatives were investigated by using density functional theory methods. The results indicate that the geometrical structure of [V6O[Formula: see text]][Formula: see text] is not different from other Lindqvist-type anions. The energy gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) (HOMO[Formula: see text]LUMO energy gap) of [V6O[Formula: see text]][Formula: see text] is smaller than those of same charge anions, [Nb6O[Formula: see text]][Formula: see text] and [Ta6O[Formula: see text]][Formula: see text]. In addition, the charge density [Formula: see text] of [V6O[Formula: see text]][Formula: see text] is larger when compared with those of other studied clusters. The investigation on the derivatives shows that the valence of V atom (V[Formula: see text] or V[Formula: see text]) and the methoxy ligand influence the HOMO[Formula: see text]LUMO energy gap and the charge density [Formula: see text] of the studied clusters.


Author(s):  
Muhammad Zamir Mohyedin ◽  
Mohamad Fariz Mohamad Taib ◽  
Afiq Radzwan ◽  
M. Mustaffa ◽  
Amiruddin Shaari ◽  
...  

Abstract Good thermoelectric performance is being sought to face major problems related to energy, especially in the concern of the usage of energy on environmental impact. In this work, we investigate the underlying mechanism to enhance the thermoelectric performance of bismuth selenide (Bi2Se3) by employing density functional theory (DFT) followed by the Boltzmann transport equation under relaxation time approximation. The structural, electronic, and thermoelectric properties were calculated and analyzed. From the analysis of combined results of thermoelectric properties and electronic properties as the function of the Fermi level, we found that the power factor of Bi2Se3 is improved by increasing electrical conductivity that contributed by the large density of states and light effective mass of charge carriers. The figure of merit, on the other hand, is enhanced by increasing Seebeck coefficient that contributed by heavy effective mass and decreasing thermal conductivity that contributed by low density of states. We also found that both power factor and figure of merit can be improved through n-type doping at 300 K and p-type doping at higher temperature (400 K and 500 K).


2012 ◽  
Vol 519 ◽  
pp. 174-178
Author(s):  
Tong Wei Li ◽  
La Chen ◽  
Yang Wang ◽  
Jin Cang Zhang

The electronic structures of the titanium-doped cubic perovskite ruthenates BaRu1-xTixO3 with x=0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and 0.875 are investigated using the spin-polarized density functional theory within the pseudopotential plane wave method. It is found that a half-metallic phase appears in the 0.75- and 0.875-doped systems, and the origin of half-metallic property is the decrease of t2g bandwidth of Ru 4d states with the increase in x. In addition, the energy gap of BaRu0.25Ti0.75O3 is as large as 1.7 eV at the Fermi level in the up-spin density of states, which suggests a stable half-metallic phase can be obtained in the present systems.


Sign in / Sign up

Export Citation Format

Share Document