Fabrication and Thermal Physical Properties of SiCp/Al Composite upon Powder Metallurgy Followed by Hot Extrusion

2011 ◽  
Vol 320 ◽  
pp. 297-302
Author(s):  
Cheng Chen ◽  
Hua Shun Yu ◽  
Jing Jing Zhang ◽  
Wei Zhang ◽  
Shou Hui Wang

In this study, SiC particles reinforced aluminum matrix composite was successfully fabricated using powder metallurgy technique followed by hot extrusion. The phases were identified by XRD and the microstructures were observed by SEM. The results showed that only Al and SiC phases existed in the composite, SiC particulates were well distributed in the aluminum matrix and the interface between Al and SiC was clean and well combined. Meanwhile, thermal conductivity and coefficient of thermal expansion of the composite were investigated, the research showed that thermal conductivity decreased as SiCp content increased because of poor thermal conductivity of SiCp and increased crystal defects forming during the fabrication process. And the same to thermal conductivity, coefficient of thermal expansion of the composite decreased as SiCp content increased because SiCp can acted as obstacles to the motion of dislocations, which can hinder the hot movement of electronics.

Author(s):  
Preetkanwal Singh Bains ◽  
H. S. Payal ◽  
Sarabjeet Singh Sidhu

The present study investigates the thermal conductivity and coefficient of thermal expansion of bimodal SiCp reinforced Aluminum matrix composites formed via powder metallurgy method. The after-effects of proportion of particulate reinforcement as size distribution and sintering parameters on the thermal properties have been explored. The Box-Behnken design for response surface methodology was adopted to recognize the significance of chosen variables on the thermal conductivity and coefficient of thermal expansion of the composite. It is witnessed that the thermal conductivity and coefficient of thermal expansion enhanced due to increase in fine SiC particulates volume fraction. It has been exhibited that the fine SiC particulates (37μm) doped Al-matrix occupied interstitial positions and developed continuous SiC-matrix network. SEMs were conducted to evaluate the microstructure architecture for MMCs.


2005 ◽  
Vol 490-491 ◽  
pp. 558-563
Author(s):  
Gang Li ◽  
Wei Dong Fei

The thermal expansion behaviors of aluminum borate whisker and Fe3O4 reinforced pure aluminum matrix composite with different thermal treatments were studied. Using transmission electron microscopy (TEM) the microstructures of the composite were investigated. The results indicated that the thermal expansion coefficient of the new composite was low. It can be found that the thermal expansion coefficient of as-cast composite is much lower than that of quenched and annealed composites. On the basis of phase transformation analysis of Fe3O4 particles in the composite, the mechanism of low CTE of the composite was discussed.


Author(s):  
P.J. Huang ◽  
J.J. Swab ◽  
P.J. Patel ◽  
W.S. Chu

Abstract The development of thermal barrier coatings (TBCs) for diesel engines has been driven by the potential improvements in engine power and fuel efficiency that TBCs represent. TBCs have been employed for many years to reduce corrosion of valves and pistons because of their high temperature durability and thermal insulative properties. There are research programs to improve TBCs wear resistance to allow for its use in tribologically intensive areas of the engine. This paper will present results from tribological tests of ceria stabilized zirconia (CeSZ). The CeSZ was applied by atmospheric plasma spray process. Various mechanical and thermal properties were measured including wear, coefficient of thermal expansion, thermal conductivity, and microhardness. The results show the potential use of CeSZ in wear sensitive applications in diesel applications. Keywords: Thermal Barrier Coating, Diesel Engine, Wear, Thermal Conductivity, and Thermal Expansion


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4030 ◽  
Author(s):  
Amélie Veillère ◽  
Hiroki Kurita ◽  
Akira Kawasaki ◽  
Yongfeng Lu ◽  
Jean-Marc Heintz ◽  
...  

Aluminum matrix composites reinforced with carbon fibers or diamond particles have been fabricated by a powder metallurgy process and characterized for thermal management applications. Al/C composite is a nonreactive system (absence of chemical reaction between the metallic matrix and the ceramic reinforcement) due to the presence of an alumina layer on the surface of the aluminum powder particles. In order to achieve fully dense materials and to enhance the thermo-mechanical properties of the Al/C composite materials, a semi-liquid method has been carried out with the addition of a small amount of Al-Si alloys in the Al matrix. Thermal conductivity and coefficient of thermal expansion were enhanced as compared with Al/C composites without Al-Si alloys and the experimental values were close to the ones predicted by analytical models.


2013 ◽  
Vol 752 ◽  
pp. 48-56
Author(s):  
Andrea Simon ◽  
Károly Kovács ◽  
C. Hakan Gür ◽  
Tadeusz Pieczonka ◽  
Zoltán Gácsi

Composites are special material which can provide individual properties such as high strength with low density or good thermal conductivity with low thermal expansion coefficient. Composites conform to the constantly evolving and more complex expectations. In order to make a product with good quality, it is important to choose suitable materials and technology. In this research powder metallurgy (PM), as one of the most common composite manufacturing technology, was examined -which factors and mechanisms influence mostly the properties of the product. Ishikawa method was used to reveal these correlations.


2020 ◽  
Vol 4 (1) ◽  
pp. 19 ◽  
Author(s):  
Penchal Reddy Matli ◽  
Vyasaraj Manakari ◽  
Gururaj Parande ◽  
Manohar Reddy Mattli ◽  
Rana Abdul Shakoor ◽  
...  

In the present study, Ni50Ti50 (NiTi) particle reinforced aluminum nanocomposites were fabricated using microwave sintering and subsequently hot extrusion. The effect of NiTi (0, 0.5, 1.0, and 1.5 vol %) content on the microstructural, mechanical, thermal, and damping properties of the extruded Al-NiTi nanocomposites was studied. Compared to the unreinforced aluminum, hardness, ultimate compression/tensile strength and yield strength increased by 105%, 46%, 45%, and 41% while elongation and coefficient of thermal expansion (CTE) decreased by 49% and 22%, respectively. The fabricated Al-1.5 NiTi nanocomposite exhibited significantly higher damping capacity (3.23 × 10−4) and elastic modulus (78.48 ± 0.008 GPa) when compared to pure Al.


1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


Sign in / Sign up

Export Citation Format

Share Document