Optimization of Operating Parameters for Decolorization of Metal Complex Dyes by UV/H2O2 Process

2011 ◽  
Vol 347-353 ◽  
pp. 2245-2248
Author(s):  
Jing Jian Zhu ◽  
Long Lu ◽  
Jian Xin Chen

In this paper, the effects of operating parameters such as UV light wavelength, initial pH, reaction temperature and hydrogen peroxide concentration on decolorization of metal complex dyes (Neutral Bordeaux GRL, Neutral Pink BL and Neutral Blue BNL) by UV/H2O2process were studied in detail. The results showed that the decolorization rate constants were obviously enhanced with the increase of UV intensity. In UV (254nm)/H2O2system, 94.4% decolorization of Neutral Bordeaux GRL, 99.2% decolorization of Neutral Pink BL and 65.4% decolorization of Neutral Blue BNL were achieved after 60 min reaction. The results also indicated that both suitable amount of H2O2and initial pH were needed for effective decolorization of different metal complex dyes. The reaction activation energy of Neutral Bordeaux GRL, Neutral Pink BL and Neutral Blue BNL were 3.43, 14.4 and 23.39 KJ mol-1, respectively.

2004 ◽  
Vol 49 (4) ◽  
pp. 117-122 ◽  
Author(s):  
C.Y. Kwan ◽  
W. Chu

The photodegradation of a herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by ferrous oxalate/UV/H2O2 was studied. Ferrous oxalate, the more photoactive and reactive species, was found to react faster with hydrogen peroxide for hydroxyl radical production than ferrous ions under UV irradiation. About 2.9 times greater rate enhancement was found with the addition of 0.3 mM oxalate than that of a solution containing 0.1 mM Fe2+ and 1 mM H2O2 in the presence of UV light at 253.7 nm. The kinetics dependence of hydrogen peroxide concentration and initial solution pH were also investigated. A threefold increase in peroxide concentration could accelerate the removal of 2,4-D and nearly complete the reaction in 30 min of illumination. The initial decay rate of 2,4-D treated by ferrous oxalate/UV/H2O2 accelerated from 0.0029 to 0.0034 s-1 and the overall removal of the starting material increased from 78% to 99.9%. The 2,4-D transformation at lower initial pH had higher reaction rates than that at higher pH and different reaction mechanisms were identified. The efficiency of the herbicide decomposition was retarded 2.6 times and 9.6 times as initial pH increased from 2.8 to 5.1 and 9.0, respectively.


2010 ◽  
Vol 178 ◽  
pp. 196-201
Author(s):  
Can Li ◽  
Yan Ding ◽  
Jun Ping Meng ◽  
Li Fang Zhao

Porous tourmaline composite material (PTCM) was prepared mainly by schorl and used to catalyze hydrogen peroxide for the removal of phenol. The optimum reaction conditions were determined by testing the phenol removal rate under the conditions of different initial phenol concentration, hydrogen peroxide dosage, PTCM dosage and temperature. The reaction activation energy was calculated to be 32.148KJ/mol, indicating that PTCM showed good effect on catalyzing hydrogen peroxide, phenol could be degraded quickly and the removal rate could reach 97%. The mechanism of the system was the Fenton-like reaction


2001 ◽  
Vol 3 (4) ◽  
pp. 193-199 ◽  
Author(s):  
Paola A. Babay ◽  
Carina A. Emilio ◽  
Rosana E. Ferreyra ◽  
Eduardo A. Gautier ◽  
Raquel T. Gettar ◽  
...  

The photocatalytic degradationof EDTA overTiO2has been analyzed to establish the influence of oxidants on the reaction rate, the nature of the intermediates and the kinetic regime. Degussa P-25 suspensions containing EDTA at initial pH 3 in different concentrations were irradiated under near UV light. A Langmuirian behavior was observed.O2at saturation concentrations was found to be crucial for EDTA degradation. The rapid depletion of EDTA was not accompanied by a corresponding TOC decrease, indicating formation of refractory intermediates. An enhancement in TOC reduction could be achieved by keeping pH constant or by hydrogen peroxide addition. Addition of Fe(III) caused a remarkable increase on the initial rate of EDTA consumption and also on TOC decrease. Changes in both parameters clearly increased under the simultaneous addition of Fe(III) andH2O2, until limiting values.Some of the possible intermediates of EDTA degradation were evaluated in the filtered solution. So far, glycine, ethylenediamine, ammonium, formaldehyde, and formic, iminodiacetic, oxalic, oxamic, glycolic and glyoxylic acids have been identified in different proportions, depending on the experimental conditions. Different degradationpathways are proposed. Inthe presence of Fe(III), photo-Fenton reactions would contribute also to the degradation process.


2013 ◽  
Vol 10 (3) ◽  
pp. 376-385 ◽  

Advanced oxidation processes (AOPs) are widely used for the removal of recalcitrant organic constituents from industrial and municipal wastewater. The aim of this study was to review the use of titanium dioxide/UV light process, hydrogen peroxide/UV light process and Fenton’s reactions in wastewater treatment. The main reactions and the operating parameters (initial concentration of the target compounds, amount of oxidation agents and catalysts, nature of the wastewater etc) affecting these processes are reported, while several recent applications to wastewater treatment are presented. The advantages and drawbacks of these methods are highlighted, while some of the future challenges (decrease of operational cost, adoption of strategies for processes integration) are discussed.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 44
Author(s):  
Kozak ◽  
Włodarczyk-Makuła

The aim of the research was to determine the effectiveness of removing micro-organic pollutants, including PAHs, using the modified Fenton method. The tested material was pretreated coke wastewater, in which the initial chemical oxygen demand (COD) value and initial polycyclic aromatic hydrocarbons (PAHs) concentration were determined. The samples were then subjected to an oxidation procedure. Before the process, the pH was adjusted to 3.5–3.8. Next, the following doses of sodium carbonate—hydrogen peroxide (2/3): 1.2 g/L, 1.5 g/L and 2 g/L, and a constant dose of iron sulphate were added. The next step was exposing the samples to UV light for 6 min and separating the organic matrix from the samples of wastewater. After the tests, the final value of the COD and the final PAHs concentration were determined. The average content of organic pollutants in pretreated coke wastewater determined by the COD index was 538 mg/L, and after the oxidation process, the COD index decreased in the range from 9 to 29%. The efficiency of the degradation of the sum of 16 PAHs was varied and was in the range of 94–97.6%. The research results show that sodium carbonate—hydrogen peroxide (2/3) can be used for the degradation of organic pollutants, such as PAHs, in the modified Fenton process.


2019 ◽  
Vol 82 (11) ◽  
pp. 1896-1900
Author(s):  
A. M. JONES-IBARRA ◽  
C. Z. ALVARADO ◽  
CRAIG D. COUFAL ◽  
T. MATTHEW TAYLOR

ABSTRACT Chicken carcass frames are used to obtain mechanically separated chicken (MSC) for use in other further processed food products. Previous foodborne disease outbreaks involving Salmonella-contaminated MSC have demonstrated the potential for the human pathogen to be transmitted to consumers via MSC. The current study evaluated the efficacy of multiple treatments applied to the surfaces of chicken carcass frames to reduce microbial loads on noninoculated frames and frames inoculated with a cocktail of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium. Inoculated or noninoculated frames were left untreated (control) or were subjected to treatment using a prototype sanitization apparatus. Treatments consisted of (i) a sterile water rinse, (ii) a water rinse followed by 5 s of UV-C light application, or (iii) an advanced oxidation process (AOP) combining 5 or 7% (v/v) hydrogen peroxide (H2O2) with UV-C light. Treatment with 7% H2O2 and UV-C light reduced numbers of aerobic bacteria by up to 1.5 log CFU per frame (P < 0.05); reductions in aerobic bacteria subjected to other treatments did not statistically differ from one another (initial mean load on nontreated frames: 3.6 ± 0.1 log CFU per frame). Salmonella numbers (mean load on inoculated, nontreated control was 5.6 ± 0.2 log CFU per frame) were maximally reduced by AOP application in comparison with other treatments. No difference in Salmonella reductions obtained by 5% H2O2 (1.1 log CFU per frame) was detected compared with that obtained following 7% H2O2 use (1.0 log CFU per frame). The AOP treatment for sanitization of chicken carcass frames reduces microbial contamination on chicken carcass frames that are subsequently used for manufacture of MSC.


1964 ◽  
Vol 67 (10) ◽  
pp. 1597-1600 ◽  
Author(s):  
Mitsuo Kimura ◽  
Masahiro Kishida ◽  
Nobuhiko Kuroki ◽  
Kenzo Konishi

Mixtures of methane and oxygen behave in a reproducible manner at temperatures of 440 to 520°C and initial pressures of 100 to 350 mm when reacting in Pyrex vessels freshly cleaned with hydrofluoric acid. The apparent order of the reaction ranged from 2∙3 to 2∙6 and the overall activation energy from 29 to 41 kcal/mole. Analyses of the products formed have been made, together with measurements of pressure change. Formaldehyde is formed from the commencement of the reaction including the induction period, but its concentra­tion reaches a maximum near the stage where the pressure rise is a maximum, and then falls off. Hydrogen peroxide is also formed, less rapidly in the earliest stage, but its rate of formation overtakes that of formaldehyde and it reaches an even higher concentration. No other peroxides were detected, nor was methanol found. Hydrogen was present in the gaseous products. These observations are not in full accord with some of the conclusions derived from earlier investigations.


2013 ◽  
Vol 807-809 ◽  
pp. 361-364
Author(s):  
Fang Guo ◽  
Jun Qiang Xu ◽  
Jun Li

The Fe/Beta catalysts were prepared by conventional incipient wetness impregnation. The catalysis oxidation degradation of methyl orange was carried out in catalyst and H2O2 process. The results indicated that the catalyst and hydrogen peroxide were more benefit to degradation of methyl orange. The reaction condition was optimized. The optimum reaction process was as follow: iron amount of catalyst was 1.25%, the catalyst dosage and H2O2 concentration was 1 mg/L and 1.5 mg/L, and reaction temperature was 70 °C. The apparent activation energy (65 KJ/mol) was obtained according to the arrhenius formula, which was benefit to study the reaction mechanism.


Sign in / Sign up

Export Citation Format

Share Document