Phenol Degradation in the System of H2O2/Porous Tourmaline Composite Materials

2010 ◽  
Vol 178 ◽  
pp. 196-201
Author(s):  
Can Li ◽  
Yan Ding ◽  
Jun Ping Meng ◽  
Li Fang Zhao

Porous tourmaline composite material (PTCM) was prepared mainly by schorl and used to catalyze hydrogen peroxide for the removal of phenol. The optimum reaction conditions were determined by testing the phenol removal rate under the conditions of different initial phenol concentration, hydrogen peroxide dosage, PTCM dosage and temperature. The reaction activation energy was calculated to be 32.148KJ/mol, indicating that PTCM showed good effect on catalyzing hydrogen peroxide, phenol could be degraded quickly and the removal rate could reach 97%. The mechanism of the system was the Fenton-like reaction

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2191-2194 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
T. Kamiya

The metabolic pathway of the phenol degradation in Pseudomonasputida BH was amplified by introducing the recombinant plasmid containing catechol 2,3 oxygenase gene isolated fron the chromosome of BH. This strain could degrade phenol and grow much faster than the wild strain at the phenol concentration of 100mg/L. This strain seems to accelerate the phenol removal rate if it is applied to the treatment of wastewater containing phenol.


2013 ◽  
Vol 807-809 ◽  
pp. 361-364
Author(s):  
Fang Guo ◽  
Jun Qiang Xu ◽  
Jun Li

The Fe/Beta catalysts were prepared by conventional incipient wetness impregnation. The catalysis oxidation degradation of methyl orange was carried out in catalyst and H2O2 process. The results indicated that the catalyst and hydrogen peroxide were more benefit to degradation of methyl orange. The reaction condition was optimized. The optimum reaction process was as follow: iron amount of catalyst was 1.25%, the catalyst dosage and H2O2 concentration was 1 mg/L and 1.5 mg/L, and reaction temperature was 70 °C. The apparent activation energy (65 KJ/mol) was obtained according to the arrhenius formula, which was benefit to study the reaction mechanism.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiao Chen ◽  
Yan Liang ◽  
Xuefei Zhou ◽  
Yanling Zhang

A novel non-photo-dependent semiconductor catalyst (CT) was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water).


2013 ◽  
Vol 726-731 ◽  
pp. 301-304 ◽  
Author(s):  
Xi Pu He ◽  
Jie Liu ◽  
Hong Jie Liu ◽  
Sen Sheng Wang ◽  
Wen Hui Xu ◽  
...  

The influence on the growth and phenol biodegradation ofBacillussp. CDQ by three different conventional carbon sources were investigated. The results indicated that conventional carbon sources certainly affected the growth of strain CDQ and the biodegradation of phenol. Under the concentration of 1.5 to 3 g L-1, contrasting to the comparison, glucose improved the growth of theBacillussp. CDQ but inhibited the phenol biodegradation byBacillussp. CDQ. And the effect of inhibition increased with increasing glucose concentration. Below 1.5 g L-1, the rate of phenol removal increased with the amount of glucose added. Phenol biodegradation rate obviously decreased in the presence of sodium acetate. Lactose can significantly improve the rate of phenol biodegradation. However, no noticeable improvement on the removal rate of phenol was observed under different concentrations of lactose.


2011 ◽  
Vol 347-353 ◽  
pp. 2245-2248
Author(s):  
Jing Jian Zhu ◽  
Long Lu ◽  
Jian Xin Chen

In this paper, the effects of operating parameters such as UV light wavelength, initial pH, reaction temperature and hydrogen peroxide concentration on decolorization of metal complex dyes (Neutral Bordeaux GRL, Neutral Pink BL and Neutral Blue BNL) by UV/H2O2process were studied in detail. The results showed that the decolorization rate constants were obviously enhanced with the increase of UV intensity. In UV (254nm)/H2O2system, 94.4% decolorization of Neutral Bordeaux GRL, 99.2% decolorization of Neutral Pink BL and 65.4% decolorization of Neutral Blue BNL were achieved after 60 min reaction. The results also indicated that both suitable amount of H2O2and initial pH were needed for effective decolorization of different metal complex dyes. The reaction activation energy of Neutral Bordeaux GRL, Neutral Pink BL and Neutral Blue BNL were 3.43, 14.4 and 23.39 KJ mol-1, respectively.


2003 ◽  
Vol 6 (1) ◽  
Author(s):  
Shinta Kunitomo ◽  
Tadashi Ohbo ◽  
Bing Sun

AbstractIn this investigation, the pulsed discharge characteristics in water and the phenol-degradation properties of three different types of reactors, which had rod-rod, rod-plate and wire-cylinder format, were studied. Among the three types of reactors, it was found that the phenol removal efficiency was highest for the wirecylinder reactor configuration. In addition, the influence of pulse energy for removal efficiency was investigated. The removal efficiency at 180 kV-72 J discharged is higher than at 180 kV-960 J discharged. Furthermore, the effect of hydrogen peroxide on phenol removal efficiency was also studied under conditions of 120 kV-72 J, and it was found that the phenol degradation rate was higher when hydrogen peroxide was used.


2012 ◽  
Vol 610-613 ◽  
pp. 352-355 ◽  
Author(s):  
Ji Feng Yang ◽  
Hong Hui Chen

The present study provides results describing the degradation performance of ciprofloxacin antibiotic via Fenton treatment. The effect of reaction conditions including the initial pH value, and dosages of ferrous ions and hydrogen peroxide on ciprofloxacin and COD removal was investigated. Ciprofloxacin removal efficiency of more than 90% was achieved under optimum reaction conditions of pH value of 2, dosages of 0.75 mmol/L of ferrous ion, and 2.0 mmol/L of hydrogen peroxide after 10min. However, the change of COD in aqueous solution was not obvious and further study about intermediate products during oxidation process should be carried out in the future.


2014 ◽  
Vol 1010-1012 ◽  
pp. 872-875
Author(s):  
Hai Feng Chen

Acid Red B dye wastewater was collaborative degradated by ozone and hydrogen peroxide. Various reaction conditions are studied which affect on decoloration rates of wastewater. The decoloration rate of Wastewater increases with O3 gas flow rate increasing, and also increases with pH value increasing. O3/H2O2 collaborative effects are better than O3 alone, and the decoloration rate is higher with more H2O2 addition. Ozone Oxidation have a good effect to degrade Acid Red B dye wastewater, the decoloration rate can reach 98% with inflating O3 30min. H2O2 synergy can greatly increase the reaction rate, shorten the reaction time, improve the utilization of ozone.


2013 ◽  
Vol 295-298 ◽  
pp. 1079-1083 ◽  
Author(s):  
Ling Zhang ◽  
Jing Liang Xie

[Objective] The aim is to study the pretreatment effect of herbicides production wastewater by spherical micro-electrolysis media. [Method] Spherical micro-electrolysis media is preferred for the pretreatment of herbicides production wastewater and effects of PH, amount of media and reaction time on the pretreatment was investigated. The change of pre- and post-processing herbicides production wastewater was determined; the operation cost was also analyzed. [Result]The optimum reaction conditions are as follows: the PH was 3; the amount of media was 1.0kg/L wastewater; and the reaction time was 3.0h. Under the optimum reaction conditions, the removal of COD, Chromaticity and TP reached 26.3%, 86.4% and 95.6% respectively; BOD5/COD varied from 0.10 to 0.35, and the biodegradability was improved greatly; the cost of pretreatment was 1.0yuan/t, and it was lower than that of electrolysis. [Conclusion] The pretreatment of herbicides production wastewater by spherical micro-electrolysis media has good effect, low cost and no soiling hardening, so it provides a good foundation for subsequent biological treatment.


2006 ◽  
Vol 71 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Zora Grahovac ◽  
Snezana Mitic ◽  
Emilija Pecev ◽  
Snezana Tosic

Anew, sensitive and simple kinetic method has been developed for the determination of traces of Co(II) ions based on their catalytic effect in the oxidation of trisodium-2-hydroxy-1-(4-sulphonato-1-naphthylazo)naphthalene-6,8-disulphonate (red artificial color Ponceau 4R) by hydrogen peroxide in borate buffer. The reaction was followed spectrophotometrically by tracing the oxidation product at 478.4 nm within 1 min after the initiation of the reaction. The optimum reaction conditions are: borate buffer (pH 10.50), Ponceau 4R (8 x10-6 mol/dm3), H2O2 (3 x10-2 mol/dm3) at 22 ?C. Following this procedure, Co(II) can be determined with a linear calibration graph up to 1.17 ng/cm3 and a detection limit of 0.20, based on the 3??criterion. The relative error ranges between 4.80-3.25 % for the concentration interval of Co(II) ions 1.76-17.61 ng/cm3. The effects of certain foreign ions on the reaction rate were determined for an assessment of the selectivity of the method. The method was applied for the determination of Co(II) in pharmaceutical samples.


Sign in / Sign up

Export Citation Format

Share Document