The Use of Mixture of Piper Betle and Green Tea as a Green Corrosion Inhibitor for API X-52 Steel in Aerated 3.5 % NaCl Solution at Various Rotation Rates

2011 ◽  
Vol 383-390 ◽  
pp. 5418-5425 ◽  
Author(s):  
Andi Rustandi ◽  
Johny W. Soedarsono ◽  
Bambang Suharno

Flow induced corrosion due to the presence of turbulent flow often occurs which causes severe internal thinning and promotes premature leakage. In practice, the common method for controlling such internal high corrosion rate is chemical injection using corrosion inhibitor such as amine based which utilizing adsorption or film forming mechanism. Unfortunately, the protection performance of such inhibitor might be less effective due to turbulent flow induced. The aim of this work is to study the use of mixture of piper betle and green tea as an alternative of green corrosion inhibitor (eco-friendly) to reduce the corrosion rate of API X-52 steel in aerated 3.5 % NaCl solution in turbulent flow condition whether high inhibitor efficiency can be achieved. The method of corrosion rate measurements was conducted using electrochemical polarization equipped with CMS100-Gamry Instruments and DC105 software as well as Rotating Cylinder Electrode (RCE) simulation. The mechanism of inhibition was also investigated using Electrochemical Impedance Spectroscopy (EIS) method with EIS300 software. The results showed that the addition of mixture of 1000 ppm piper betle and 4000 ppm green tea extracts with Reynold number ranging from 0 up to 30000 reduced the corrosion rates significantly with its approximately 90 % inhibitor efficiencies achieved. In addition, EIS spectra showed that in the absence of corrosion inhibitor, the Warburg impedance (diffusion controlled) was significantly attributed to the overall impedance but in the presence of corrosion inhibitor, capacitive impedance (charge transfer controlled) was mainly attributed to the overall impedance.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Atria Pradityana ◽  
Sulistijono ◽  
Abdullah Shahab ◽  
Lukman Noerochim ◽  
Diah Susanti

Inhibitor is a substance that is added to the corrosive media to inhibit corrosion rate. Organic inhibitors are preferred to inorganic ones since they are environmentally friendly. One of the organic compounds which is rarely reported as a corrosion inhibitor isMyrmecodia Pendans. The organic compounds can be adsorbed on the metal surface and block the active surface to reduce the rate of corrosion. In this study, the used pipe was carbon steel API 5L Grade B with 3.5% NaCl solution as the corrosion medium. The objective of this research was to analyze the inhibition mechanismMyrmecodia Pendanstowards carbon steel in a corrosion medium. Concentration variations of extractMyrmecodia Pendanswere 0–500 ppm. Fourier Transform Infrared (FTIR) was used for chemical characterization ofMyrmecodia Pendans. Polarization and Electrochemical Impedance Spectroscopy (EIS) were used to measure the corrosion rate and behaviour. From the electrochemical measurements, it was found that the addition of 400 mg/L inhibitor gave the highest inhibition efficiency.Myrmecodia Pendansacted as a corrosion inhibitor by forming a thin layer on the metal surface.


Corrosion inhibition of mild steel in 240 ppm NaCl solution using Calcium D-Pantothenate (Vitamin B5 ) as corrosion inhibitor is studied using electrochemical impedance, potentiodynamic polarization and weight loss studies. From the potentiodynamic polarization studies, icorr (corrosion current density) decreases with increasing the concentration of vitamin B5 (VB5 ). The CR (corrosion rate) decreases and the IE (inhibition efficiency) of VB5 increases on increasing the concentration of VB5 .Surface investigation using SEM, EDX spectra, UV-Vis, FTIR, electrochemical impedance, potentiodynamic polarization and adsorption isotherm parameter of VB5 in 240 ppm NaCl solution shows that VB5 can act asworthy corrosion inhibitors. Quantum chemical data obtained from density functional theory (DFT) calculations also agreed with the experimental outcomes.


2017 ◽  
Vol 64 (6) ◽  
pp. 654-663 ◽  
Author(s):  
A.K. Larios-Galvez ◽  
J. Porcayo-Calderon ◽  
V.M. Salinas-Bravo ◽  
J.G. Chacon-Nava ◽  
Jose Gonzalo Gonzalez-Rodriguez ◽  
...  

Purpose The purpose of this research paper was to investigate the use of methanolic extract of Salvia hispanica (S. hispanica) as a green corrosion inhibitor for bronze in a simulated acid rain solution. Design/methodology/approach Extract of S. hispanica was used as a green corrosion inhibitor for bronze in simulated acid rain solution. Electrochemical techniques such as potentiodynamic polarization curves, electrochemical impedance spectroscopy and electrochemical noise were used. Parameters such as polarization, charge transfer and noise resistance (Rp, Rct and Rn, respectively) were calculated. Findings Results showed that the extract acts as a good, anodic type of inhibitor. The inhibitor efficiency increased with increasing its concentration up to 400 ppm, decreasing beyond this concentration. Efficiency also increased with an increase in the immersion time. The inhibition was due to the adsorption of components found in the S. hispanica extract following a Langmuir adsorption isotherm. Practical implications S. hispanica extract can be used as a corrosion inhibitor for bronze in acid rain solution. Originality/value This study provides new information on the inhibition features of S. hispanica under specific conditions. This eco-friendly inhibitor could find applications to protect bronze exposed to polluted urban atmospheres.


2021 ◽  
Vol 1021 ◽  
pp. 241-250
Author(s):  
Basheer A. Abdulhessein ◽  
Alaa Mashjel Ali

In the present work, corrosion inhibition of low carbon steel in a 1M H2SO4 solution by pectin nanoparticles extract was studied by potentiostatic and weight loss methods. Increasing the acid concentration leads to an increase in the corrosion rate of the electrode. The variable conditions of the pectin nanoparticles used in this investigation are (2 to 10g/l at 25oC). It was found that the concentrates acts as a compelling consumption inhibitor for gentle steel in an acidic medium. The hindrance process is credited to the adsorbed film development of the inhibitor on the metal surface of that protects the metal against corrosion. It was observed that the efficiency of the inhibition rose with increased inhibitor concentration up to the maximum level of 92% for 10 g/l at 25 oC. The results showed that the corrosion rate without the inhibitor was 2.263mpy while with the inhibitor 0.179 mpy, meaning that the rate of corrosion improved more than 90%. The results of the immersion time (1 h) at 25oC on the inhibition of the corrosion also indicated improved corrosion resistance. The results demonstrated that an extract of pectin nanoparticles could serve as an excellent eco-friendly, green corrosion inhibitor. Fourier- transform infrared spectroscopy (FTIR) results indicate that these nanoparticles contain various chemical bonds (C-C, CH2, C-O-C, and cellulose) with metal surfaces, lead to producing a barrier layer that protects the surface.


2013 ◽  
Vol 763 ◽  
pp. 23-27 ◽  
Author(s):  
Ji Liu ◽  
Li Zheng ◽  
Hai Bo Gan ◽  
Huan Liu ◽  
Zhi Hua Tao ◽  
...  

This paper presents the investigation of cyproconazole,namely2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl) butan-2-ol,ascorrosion inhibitor for copper in synthetic seawater (3.5% NaCl solution).The inhibition action of cyproconazole on the corrosion of copper was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.The selective desorption of Cyproconazole from copper surface was also studied by the differential polarization curves.EIS indicates that the inhibition formed an adsorption film on copper surface.The inhibition efficiency increases with increasing concentration.Polarization curves show that Cyproconazole acts as mixed-up inhibitor.


2011 ◽  
Vol 8 (3) ◽  
pp. 1200-1205 ◽  
Author(s):  
R. Khandelwal ◽  
S. K. Arora ◽  
S. P. Mathur

The corrosion inhibition of mild steel using extracts ofCordia dichotomain different acid media was investigated by mass loss and thermometric methods. The experiments were carried out at 299±0.2 K in presence of different concentrations of dry fruit, leaves and stem extracts ofCordia dichotoma. The results reveal that the alcoholic extracts ofCordia dichotomais a better corrosion inhibitor than that of toxic chemicals. The fruit extract is more potent than leaves and stem extracts to inhibit the corrosion rate. The study seeks to investigate the possibility of using extracts ofCordia dichotomaas a green corrosion inhibitor for mild steel.


2016 ◽  
Vol 842 ◽  
pp. 24-30 ◽  
Author(s):  
Andi Rustandi ◽  
M. Akbar Barrinaya

Red cabbage extract has been investigated in this work whether it would perform as a green corrosion inhibitor for API 5L grade X60 steel in 3.5% NaCl environment. Based on the FTIR and LC-MS analysis the active compounds of corrosion inibitor were hydroxyl, carbonyl and cyanidin. The Tafel polarization test results showed that red cabbage extract performed as a mixed corrosion inhibitor and the Electrochemical Impedance Spectroscopy test results showed that the impedance, polarization resistance and capacitive resistance of steel surface increased with the addition of red cabbage corrosion inhibitor. Based on evaluation of the testing results red extract red cabbage performed significant corrosion inhibition effect. The inhibitor efficiency increases with increased corrosion inhibitor concentration and the optimum inhibitor percent efficiency achieved 81%. The adsorption mechanism of red cabbage corrosion inhibitor can be considered as a Langmuir Isotherm


Molekul ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. 98
Author(s):  
Yayan Sunarya

In this research, 3-Mercaptopropionic acid (MPA) as corrosion inhibitor of carbon steel in CO2 aerated 1% NaCl solution with buffer pH adjustment has been studied by means of electrochemical impedance (EIS) and polarization (Tafel plot). MPA was found to be an effective carbon steel inhibitor. Percentage inhibition efficiency (IE %) calculated by both Tafel plot and EIS, ranged from 85% to 90%. MPA was found to affect the cathodic processes and act as cathodic-type inhibitors. Mechanism of inhibit corrosion by adsorption mechanism leads to the formation of a protective chemisorbed film on the metal surface film which suppresses the dissolution reaction and the hydrogen evolution reaction is activation controlled.


Sign in / Sign up

Export Citation Format

Share Document