Ore-Proportioning Optimization Technology in Pellet Process Based on Self-Characteristics of Iron Ores

2011 ◽  
Vol 402 ◽  
pp. 183-186
Author(s):  
Xiao Fang Lv ◽  
Hong Liang Han ◽  
Hong Sheng He

The quality of pellet has a great extent effect on the BF smooth operation. In this paper, Self-characteristics of iron ore powers used in pellet process were investigated. Then, the principles of ore-proportioning optimization basing on self-characteristics of iron ore during pelletizing were proposed. Schemes of ore-proportioning optimization were designed and a series of experiments on the schemes have been made for seeking the rational ore-proportioning scheme. The results show that there are great differences in the pelletizing properties of single iron ore podwer, and the object of improving pellet quality is reached through optimizing ore-proportioning, that lays a theoretical foundation and provides technical basis for improving pellet quality.

2011 ◽  
Vol 201-203 ◽  
pp. 1780-1786 ◽  
Author(s):  
Sheng Li Wu ◽  
Oliveira Dauter ◽  
Yu Ming Dai ◽  
Jian Xu ◽  
Hong Chen

High-temperature properties of 10 samples of iron ore from Brazil, Australia and China were measured. Several conclusions were made based on these experimental results. Assimilability of Brazilian ore, Australian ore and Chinese ore concentrate were low, high and medium, respectively. Optimal fluidity of liquid phase was observed in 2 types of Brazilian ores (BR-B, BR-C), 1 type of Australian ore (AU-C) and 1 type of Chinese ore (CH-D). For self-strength of the bonding phase, Australian ore presented low levels, while Brazilian and Chinese ore presented high levels. According to the experimental results of high-temperature properties of iron ore, schemes of ore blending optimization were designed and sinter pot test using these blends were performed. The results indicated that ore blends composed of 30~45% Brazilian ores + 25~50% Australian ores + 20~30% Chinese concentrates presented excellent sintering results, considering both the performance of the processing and quality of the sinter. Therefore this experiment has proved that ore blending optimization combining high temperature properties can lead to more efficient sintering mixes.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Ivan Stepanov ◽  
Konstantin Borodianskiy ◽  
Adi Eliyahu-Behar

There is fragmentary knowledge of iron ore sources exploited in the past for many regions including the Southern Levant. This missing information has the potential to shed light on political, economic, craft-production, and trading patterns of past societies. This paper presents the results of smelting experiments performed in graphite crucibles and a muffle furnace, using 14 iron ore samples from the Southern Levant, in an attempt to determine their suitability for smelting using ancient techniques. A range of analytical techniques, including optical and electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, and portable X-ray fluorescence were used to comparatively investigate the mineralogy and composition of the precursor iron ores and their smelting products: Iron bloom and slag. Several parameters attesting to the ability of a given ore to be successfully reduced and consolidated into a solid metal mass were quantified. The generated results highlight the significance of a ‘correct balance’ between iron oxides and other major elements in the smelting system in order to form fluid slag and a well-consolidated bloom. These data contribute to the understanding of factors, potentially influencing choices of iron ore exploitation by past human societies in the Southern Levant.


Author(s):  
O. Prokopenko ◽  
M. Kurylo ◽  
S. Kulyk

Ukraine is in 10 countries with the largest reserves of iron ores, and the iron ore industry and metallurgical complex are budgetary sectors economically important for the country. For now the mining and metallurgical complex is experiencing not the best of times, and experts say that Ukraine is not using its potential, as it should. One of the main steps in inventory calculation is the determination of boundary value. Boundary value is calculated on the basis of geological, economic, technological and social aspects. Using only geological information, you can calculate the most favorable boundary value using geostatistics. The main cut-off parameter that determines reserves quality of ferruginous quartzites, which require enrichment by magnetic separation, is iron associated with magnetite Femagn. The paper proposes a tool for choosing the optimal cut-off grade values for evaluating BIF deposits using the example one of the West Azov group deposit. Comparison of cut-off parameters for reserves calculation of iron ores within the Azov Group deposits is carried out. To find the optimal cut-off grade Femagn using geostatistics and spatial modeling, we analyzed the dynamics of changes in the amount of reserves from changes of cut-off grade Fe. Fluctuations in average Fe grade also were took into account. The paper substantiates the optimal cut-off grade values of Fe associated with magnetite in the range of 12–14 %. The interval of the largest changes in reserves quantity with an increase is fixed for range of 12–18 %. Beyond this interval there is a minimal fluctuation of ore reserves quantity as a result of cut-off grade’s changes. In order to find optimal cut-off grade values using geostatistics and spatial modeling, it is necessary to follow the dynamics of reserves’ quantity changes depend on Fe cut-off grade, as well as to take into account average Fe grade fluctuations when changing cut-off grade.


2011 ◽  
Vol 266 ◽  
pp. 72-75 ◽  
Author(s):  
Zi Wei Ying ◽  
Jing Kun Yu ◽  
Li Xian Xu

In the laboratory condition, a series of experiments were carried out in a sintering pot when Hamersley, Niuman and Hainan lump iron ore were used as sintering hearth layer instead of the recycled sinter. The results show that the sintering productivity is increased by 1.3%, 2.6 % and 13.2 %, and the fuel consumption is decreased by 4.4%, 2.0 % and 6.6 %, respectively. Meanwhile, the tumbler strength and the reduction disintegration index of sinter are also improved. During sintering experiments, the crack of two lump iron ores used as hearth layer didn’t happen. Through using the new technology, the combined water and the sulfur impurity were effectively decreased in the sintering products. Furthermore, the micro-porosity of the sintering products was found to increase, which will contribute to improve the metallurgical properties of sinter.


2015 ◽  
pp. 692-696
Author(s):  
Remi Aubry ◽  
Laurence Gasnot

A study was carried out in six beet sugar factories in France during the 2012/13 sugar campaign. The objective was to assess the optimal dosage of formaldehyde solutions at specific process stages and in different existing factory set-ups in order to obtain the desired effect on microbial populations, without interference with the quality of the products. In addition harmlessness regarding consumer health was to be demonstrated. A series of experiments was conducted resulting in new data allowing refreshment of common knowledge and references existing regarding the use of formaldehyde solutions in the sugar industry. The effectiveness and convenience for controlling microbiological activity in beet sugar manufacture was assessed. Formaldehyde reduces sugar losses and protects in-process products without harming their further use, such as for ethanol production.


2013 ◽  
Vol 701 ◽  
pp. 28-31 ◽  
Author(s):  
Rusila Zamani Abd Rashid ◽  
Hadi Purwanto ◽  
Hamzah Mohd Salleh ◽  
Mohd Hanafi Ani ◽  
Nurul Azhani Yunus ◽  
...  

This paper pertains to the reduction process of local low grade iron ore using palm kernel shell (PKS). It is well known that low grade iron ores contain high amount of gangue minerals and combined water. Biomass waste (aka agro-residues) from the palm oil industry is an attractive alternative fuel to replace coal as the source of energy in mineral processing, including for the treatment and processing of low grade iron ores. Both iron ore and PKS were mixed with minute addition of distilled water and then fabricated with average spherical diameter of 10-12mm. The green composite pellets were subjected to reduction test using an electric tube furnace. The rate of reduction increased as temperature increases up to 900 °C. The Fe content in the original ore increased almost 12% when 40 mass% of PKS was used. The reduction of 60:40 mass ratios of iron ore to PKS composite pellet produced almost 11.97 mass% of solid carbon which was dispersed uniformly on the surface of iron oxide. The aim of this work is to study carbon deposition of PKS in iron ore through reduction process. Utilization of carbon deposited in low grade iron ore is an interesting method for iron making process as this solid carbon can act as energy source in the reduction process.


Author(s):  
Yu. I. Buryak ◽  
A. A. Skrynnikov

The article is devoted to the substantiation of the procedure for testing complex technical systems to assess the probability of performing the task, taking into account a priori data obtained from the results of modeling, field tests of components and prototypes, operation of analogues, etc. The conditions for the formation of a combined sample consisting of field experiments and experiments counted on the results of modeling are justified. Data uniformity is checked using the Student's criterion. The minimum volume of full-scale tests is determined by the requirement of equality of the amount of Fischer information about the estimated parameter obtained during full-scale tests and at the expense of a priori data A strategy for conducting field experiments is proposed, in which the required quality of evaluating the probability of completing the task is achieved with the minimum possible number of field experiments. At the first stage, a series of experiments with a volume equal to half of the required sample size is performed. At the second stage, the experiments are conducted sequentially with an assessment after each experiment of the requirements for the amount of information about the evaluated parameter and for the uniformity of data. Experiments are terminated when the specified requirements are met, and then a combined sample is formed, which is used to evaluate the probability of the system performing the task. A model example is considered. The estimation of the gain in the number of experiments performed at different probability values was carried out.


Metallurg ◽  
2021 ◽  
pp. 14-19
Author(s):  
P.I. Chernousov ◽  
S.N. Seregin ◽  
R.E. Grishin ◽  
Ya.S. Tsvily

2015 ◽  
Vol 60 (4) ◽  
pp. 2895-2900 ◽  
Author(s):  
M. Fröhlichová ◽  
D. Ivanišin ◽  
A. Mašlejová ◽  
R. Findorák ◽  
J. Legemza

The work deals with examination of the influence of the ratio between iron ore concentrate and iron ore on quality of produced iron ore sinter. One of the possibilities to increase iron content in sinter is the modification of raw materials ratio, when iron ore materials are added into sintering mixture. If the ratio is in favor of iron ore sinter, iron content in resulting sintering mixture will be lower. If the ratio is in favor of iron ore concentrate and recycled materials, which is more finegrained, a proportion of a fraction under 0.5 mm will increase, charge permeability property will be reduced, sintering band performance will decrease and an occurrence of solid particulate matter in product of sintering process will rise. The sintering mixture permeability can be optimized by increase of fuel content in charge or increase of sinter charge moisture. A change in ratio between concentrate and iron ore has been experimentally studied. An influence of sintering mixture grain size composition, a charge grains shape on quality and phase composition on quality of the produced iron sinter has been studied.


Sign in / Sign up

Export Citation Format

Share Document