In Vitro Bioactivity of a Biocomposite Fabricated from Ti and Mg Powders by Powder Metallurgy Method

2011 ◽  
Vol 415-417 ◽  
pp. 1176-1180
Author(s):  
Ehsan Sharifi Sede ◽  
Shamsedin Mirdamadi ◽  
Hossein Arabi

This study sought to create a biocomposite of Magnesium and Titanium via a powder metallurgy technique. Powder metallurgy technique was used to produce three different volume percentages of Magnesium (30% , 35% , 40%). Titanium powder was mixed with Magnesium, then the samples were compressed by 1800 Bar using a cold, isostatic press process. The samples were then sintered to 850 for 100 min. At this temperature, the compressive yield strength was increased to 210 Mpa and significantly depended on the volume percent of Magnesium present, the core size and temperature of sintering. The bioactivity of the samples in a simulated body fluid (SBF) was also investigated. When the samples were immersed in the simulated body fluid for a 14 and 28 days, calcium and other elements were found to be deposited on the surface. Additionally, it was found that TiO2 has the ability to induce the formation of bone-like apatite in the SBF. In addition, the degradation product of Magnesium in a biological system caused a rise in the pH and environment for the deposition of calcium and other element on the surface were enhanced. Finally, the samples were analyzed using XRD, EDS, and optical and scanning electron microscopy (SEM).

2011 ◽  
Vol 239-242 ◽  
pp. 1287-1291 ◽  
Author(s):  
Jun Zhao ◽  
Zhi Ming Yu ◽  
Kun Yu ◽  
Liang Jian Chen

The Mg-6%Zn-5%Hydroxyapatite (HA) biomaterial had been prepared through powder metallurgy method in this investigation. The mechanical properties and biodegradable behaviors of the Mg-Zn-HAcomposite in simulated body fluid were studied. The Mg-Zn-HA specimens obtained appropriate density, adjustable elastic modulus and compatible strength to natural bones. Immersion corrosion experiments revealed that 5wt% addition of HA in Mg-6%Zn alloy exhibited acceptable corrosion rates in simulated body fluid. The Mg matrix, Mg7Zn3phase and HA are identified in the experimental composite. The Mg(OH)2and Hydroxyapatite were found on the corrosion products in the simulated body fluid.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2137
Author(s):  
Lubomir Medvecky ◽  
Maria Giretova ◽  
Radoslava Stulajterova ◽  
Lenka Luptakova ◽  
Tibor Sopcak

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 667
Author(s):  
Zexin Wang ◽  
Fei Ye ◽  
Liangyu Chen ◽  
Weigang Lv ◽  
Zhengyi Zhang ◽  
...  

In this work, ZK60 magnesium alloy was employed as a substrate material to produce ceramic coatings, containing Ca and P, by micro-arc oxidation (MAO). Atmospheric plasma spraying (APS) was used to prepare the hydroxyapatite layer (HA) on the MAO coating to obtain a composite coating for better biological activity. The coatings were examined by various means including an X-ray diffractometer, a scanning electron microscope and an energy spectrometer. Meanwhile, an electrochemical examination, immersion test and tensile test were used to evaluate the in vitro performance of the composite coatings. The results showed that the composite coating has a better corrosion resistance. In addition, this work proposed a degradation model of the composite coating in the simulated body fluid immersion test. This model explains the degradation process of the MAO/APS coating in SBF.


2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


2014 ◽  
Vol 604 ◽  
pp. 175-179 ◽  
Author(s):  
Lasma Poca ◽  
Arita Dubnika ◽  
Dagnija Loca ◽  
Liga Berzina-Cimdina

In the present study, thein vitrobioactivity of silver-doped hydroxyapatite (HAp/Ag) scaffolds was investigated. HAp/Ag was prepared using two different modified wet precipitation methods. The X-ray powder diffraction (XRD) results showed, that sintered HAp/Ag samples prepared using method (I) contain two phases HAp and Ag, but samples prepared by method (II) contain three different phases - HAp, Ag and AgO. After 2 month incubation period in simulated body fluid (SBF), surface of HAp/Ag scaffolds was coated with bone-like apatite. Thickness of bone-like apatite layer increased from 2 μm up to 32 μm, increasing the incubation period.


2006 ◽  
Vol 16 (11) ◽  
pp. 676-680 ◽  
Author(s):  
Hyeong-Ho Jin ◽  
Sang-Ho Min ◽  
Yong-Taek Hyun ◽  
Hong-Chae Park ◽  
Seog-Young Yoon

2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

2012 ◽  
Vol 727-728 ◽  
pp. 1238-1242 ◽  
Author(s):  
Roger Borges ◽  
Antônio Carlos da Silva ◽  
Juliana Marchi

Among bioceramics materials, bioglasses which exhibits either a bioactive or resorbable behavior has been studied for many applications, such as bone substitutive and regeneration. When in contact with body fluid, the bioglasses can induce the formation of a hydroxyapatite surface layer. In this paper, we studied the bioactivity of a bioglass containing 48 wt %SiO2, 27 wt% Na2O, 19 wt % CaO and 6 wt %P2O5. After fusion and annealing, the samples were immersed in SBF for different periods, up to 14 days. The samples were characterized through XRD, DRIFT and SEM before and after bioactivity experiments. The overall results suggest the formation of a surface layer of consisting of hydroxyapatite, which was crystallized within seven days after in vitro experiments, leading to a suitable bioactivity. Moreover, the samples showed a glass network with high cohesion due to calcium addition, leading to materials with high corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document