Properties of Sputter Deposited ZnO Films Co-doped with Lithium and Phosphorus

2013 ◽  
Vol 1494 ◽  
pp. 77-82
Author(s):  
T. N. Oder ◽  
A. Smith ◽  
M. Freeman ◽  
M. McMaster ◽  
B. Cai ◽  
...  

ABSTRACTThin films of ZnO co-doped with lithium and phosphorus were deposited on sapphire substrates by RF magnetron sputtering. The films were sequentially deposited from ultra pure ZnO and Li3PO4 solid targets. Post deposition annealing was carried using a rapid thermal processor in O2 and N2 at temperatures ranging from 500 °C to 1000 °C for 3 min. Analyses performed using low temperature photoluminescence spectroscopy measurements reveal luminescence peaks at 3.359, 3.306, 3.245 eV for the co-doped samples. The x-ray diffraction 2θ-scans for all the films showed a single peak at about 34.4° with full width at half maximum of about 0.17°. Hall Effect measurements revealed conductivities that change from p-type to n-type over time.

2012 ◽  
Vol 1394 ◽  
Author(s):  
T. N. Oder ◽  
M. McMaster ◽  
A. Smith ◽  
N. Velpukonda ◽  
D. Sternagle

ABSTRACTZinc Oxide thin films were deposited on sapphire substrates by radio frequency (RF) magnetron sputtering from an ultra-high purity ZnO solid target. The ZnO films were deposited on sapphire substrates heated in oxygen and/or in vacuum prior to deposition. Additional parameters investigated included the substrate temperature varied from 25 °C to 600 °C, the deposition gas pressure varied from 5 mTorr to 40 mTorr and the gas flow rate varied from 5 to 30 standard cubic centimeter per minute (sccm). The resulting films were annealed using a rapid thermal processor in N2 gas at 900 °C for 5 min. Analyses carried out using photoluminescence spectroscopy (PL) and X-ray diffraction (XRD) measurements indicate that films deposited at 300 °C using Ar:O2 (1:1) had the best optical and microstructure qualities. Pre-heating the sapphire substrate in oxygen prior to deposition was found to create a smoother sapphire surface, and this produced a ZnO film with greatly improved qualities. This film had a luminescence peak at 3.362 eV with a full-width-half maximum (FWHM) value of 15.3 meV when measured at 11 K. The XRD 2θ-scans had peaks at 34.4° with the best FWHM value of only 0.10°. Production of high quality ZnO materials is a necessary step towards realizing highly conductive p-type doped ZnO materials which is currently a major goal in research efforts on ZnO.


2005 ◽  
Vol 475-479 ◽  
pp. 1825-1828
Author(s):  
Ju Hyun Myung ◽  
Nam Ho Kim ◽  
Hyoun Woo Kim

We have demonstrated the growth of ZnO thin films with c-axis orientation at room temperature on various substrates such as Si(100), SiO2, and sapphire by the r.f. magnetron sputtering method. X-ray diffraction (XRD) and scanning electron microscopy altogether indicated that the larger grain size and the higher crystallinity were attained when the ZnO films were deposited on sapphire substrates, compared to the films on Si or SiO2 substrates. The c-axis lattice constant decreased by thermal annealing for the ZnO films deposited on Si or SiO2 substrates, while increased by the thermal annealing for the ZnO films grown on sapphire substrates.


1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.


2011 ◽  
Vol 418-420 ◽  
pp. 293-296
Author(s):  
Qiu Yun Fu ◽  
Peng Cheng Yi ◽  
Dong Xiang Zhou ◽  
Wei Luo ◽  
Jian Feng Deng

Abstract. In this article, nano-ZnO films were deposited on SiO2/Si (100) substrates by RF (radio frequency) magnetron sputtering using high purity (99.99%) ZnO target. The effects of deposition time and annealing temperature have been investigated. XRD (X-ray diffraction) and FSEM (Field Emission Scanning Electron Microscopy) were employed to characterize the quality of the films. The results show that the ZnO film with thickness of 600nm annealed at 900°C has higher quality of both C-axis orientation and crystallization. And for the Zone film with thickness of 300nm annealed at 850°C, the quality of both C-axis orientation and crystallization is higher than that annealed at 900°C and 950°C.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Yoshitaka Nakano ◽  
Shu Saeki ◽  
Takeshi Morikawa

AbstractWe have investigated the effect of N doping into Cu2O films deposited by reactive magnetron sputtering. With increasing N-doping concentration up to 3 at.%, the optical bandgap energy is enlarged from ˜2.1 to ˜2.5 eV with retaining p-type conductivity as determined by optical absorption and Hall-effect measurements. Additionally, photoelectron spectroscopy in air measurements shows an increase in the valence and conduction band shifts with N doping. These experimental results demonstrate possible optical bandgap widening of p-type N-doped Cu2O films, which is a phenomenon that is probably associated with significant structural changes induced by N doping, as suggested from x-ray diffraction measurements.


2010 ◽  
Vol 25 (S1) ◽  
pp. S36-S39 ◽  
Author(s):  
Tieying Yang ◽  
Xiubo Qin ◽  
Huan-hua Wang ◽  
Quanjie Jia ◽  
Runsheng Yu ◽  
...  

Transparent p-type conducting Ga-doped SnO2 thin films were prepared using reactive rf-magnetron sputtering. Good p-type conduction was directly realized without the need of postdeposition annealing. The p-type conductivity was found to be very sensitive to the growth condition and process, suggesting that the carrier behavior is strongly related to the fine microstructure of the films. The microstructures of the films were characterized using synchrotron X-ray diffraction and specular reflectivity techniques. The valence state of the Ga dopant was measured from X-ray photoelectron spectra to explain the origin of net holes presented in the films.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Florine Conchon ◽  
Pierre-Olivier Renault ◽  
Philippe Goudeau ◽  
Eric Le Bourhis ◽  
Elin Sondergard ◽  
...  

AbstractResidual stresses in sputtered ZnO films on Si are investigated and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films encapsulated or not by Si3N4 protective coatings are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After a heat treatment at 800°C, ZnO films are tensily stressed while ZnO films encapsulated by Si3N4 are stress-free. With the aid of in-situ X-ray diffraction, we argue that this thermally-activated stress relaxation can be attributed to a variation of the chemical composition of the ZnO films.


2014 ◽  
Vol 898 ◽  
pp. 33-36 ◽  
Author(s):  
Cai Zhen Zhang ◽  
Yong Gang Chen ◽  
Su Liu

Na/Mg co-doped (Na,Mg):ZnO films were fabricated on pyrex glass substrates by sol-gel spin-coating method. Effects of annealing on properties of the films were particularly investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmittance spectra. The internal stress of the films annealed at different temperature was calculated. Experimental and analytical results show that some NaCl freeze-out derivatives will appear on films when the annealing temperature is too low, with the increasing annealing temperature, the c-axis tensile stress is sharply decreased first, then the c-axis stress was changed into press stress and its value is increased continuously, so the structural, surface and the optical properties of the films improve first and deteriorate afterwards.


2015 ◽  
Vol 1805 ◽  
Author(s):  
T N. Oder ◽  
R.C. Gade ◽  
C. Merlo

ABSTRACTWe report the investigation of ZnO thin films delta-doped with lithium and phosphorus introduced simultaneously. The films were deposited from high purity ceramic targets of ZnO and Li3PO4 on c-plane sapphire substrates by RF magnetron sputtering. An undoped ZnO film with a low background electron concentration was used as the buffer layer on the sapphire substrate. The doped films were prepared by carrying simultaneous sputtering from the ZnO and Li3PO4 ceramic targets. For uniform doped films, the simultaneous deposition from the ZnO and Li3PO4 was uninterrupted. For the delta-doped films on the other hand, deposition from the ZnO target was uninterrupted while that from the Li3PO4 was interrupted periodically using a shutter. Post-deposition annealing was carried using a rapid thermal processor in O2 at 900 oC for 3 min. Results obtained from photoluminescence spectroscopy measurements at 12 K revealed acceptor-related luminescence peaks at 3.35 eV, possibly due to the transition from exciton bound to a neutral acceptor. The x-ray diffraction 2θ-scans showed a single peak at about 34.4o. Hall effect measurements revealed p-type conductivities with an average Hall concentrations of 3.8 x 1013 cm-3 in uniform doped samples and 1.5 x 1016 cm-3 in delta doped samples. However, in some cases the Hall coefficients had both positive and negative values, making the determination of the carrier type inconclusive. The fluctuation in the carrier type could be due to the lateral inhomogeneity in the hole concentration caused by signal noise impacting the small Hall voltages in the measurements.


2013 ◽  
Vol 645 ◽  
pp. 64-67 ◽  
Author(s):  
Jin Zhong Wang ◽  
Elangovan Elamurugu ◽  
Hong Tao Li ◽  
Shu Jie Jiao ◽  
Lian Cheng Zhao ◽  
...  

Nitrogen and Phosphorus co-doped (N+P)- zinc oxide (ZnO) films were RF sputtered on corning glass substrates at 350 °C and comparatively studied with undoped, N-, and P- doped ZnO. X-ray diffraction spectra confirmed that the ZnO structure with a preferred orientation along direction. Scanning electron microscope analysis showed different microstructure for the N+P co-doping, and thus probably confirming the co-existence of both the dopants. X-ray photoelectron spectroscopy spectra revealed that the chemical composition in N+P co-doped ZnO are different from that found in undoped, N-, and P- doped ZnO. The atomic ratio of N and P in N+P co-doped ZnO is higher than that in single N or P doped ZnO. One broad ZnO emission peak around 420 nm is observed in photoluminescence spectra. The relative intensity of the strongest peak obtained from co-doped ZnO films is about twice than the P- doped and thrice than the pure and N- doped films.


Sign in / Sign up

Export Citation Format

Share Document