The Influence Analysis of Globular Indexing Cam Mechanism Size Parameters on Transmission Performance

2012 ◽  
Vol 426 ◽  
pp. 163-167 ◽  
Author(s):  
De Gong Chang ◽  
S.M. Li ◽  
Cong Feng An

The globular indexing cam mechanism is a kind of high-speed and high-precision indexing mechanism, widely used in the field of mechanical transmission, which has the character of smooth transmission, high-precision indexing, large transfer torque, wider choice of dynamic and static ratio, simple structure and low cost, etc. In this paper, the working principle and the main movement parameters of globular indexing cam mechanism are analyzed, and the dynamics simulation of this mechanism is done by using ADAMS dynamic simulation software to analyze the influence of size parameters on the transmission performance, which provides reliable theoretical basis for understanding the property and designing the parameter of globular indexing mechanism.

2012 ◽  
Vol 184-185 ◽  
pp. 384-388
Author(s):  
Bing Tian Gao

In order to realize the technical performance of high speed, high precision, high stability and high reliability for conjugated indexing mechanism with periodic intermittent rotary motion, a two cams structure has been designed, and its geometry size and profile curve was carefully determined. Also the calculation formula of the contour curve for CAM was deduced. Research achievement has been applied to new equipment of enterprise development, the working performance is stable and reliable, the production efficiency raised by 30% compared to the domestic industry. The mechanism has characteristics of simplified structure, improved transmission performance and low cost.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 586
Author(s):  
Jincheng Liu ◽  
Jiguang Yue ◽  
Li Wang ◽  
Chenhao Wu ◽  
Feng Lyu

As the core of electronic system, the switched-mode power supply (SMPS) will lead to serious accidents and catastrophes if it suddenly fails. According to the related research, the monitoring of ripple can acquire the health degree of SMPS indirectly. To realize low-cost, high-precision, and automatic ripple measurement, this paper proposes a new ripple voltage (peak-to-peak value) measuring scheme, utilizing a DAC and two high-speed comparators. Within this scheme, the DC component of SMPS output is blocked by a high-pass filter (HPF). Then, the filtered signal and the reference voltage from a DAC together compose the input of a high-speed comparator. Finally, output pulses of the comparator are captured by a microcontroller unit (MCU), which readjusts the output of the DAC by calculation, and this process is repeated until the DAC output is exactly equal to the peak (or valley) value of ripple. Moreover, in order to accelerate the measurement process, a peak estimation method is specially designed to calculate the output ripple peak (or valley) value of buck topology through merely two measurements. Then the binary search method is utilized to obtain a more exact value on the basis of estimative results. Additionally, an analysis of the measurement error of this ripple measurement system is executed, which shows that the theoretical error is less than 0.5% where the ripple value is larger than 500 mV. Furthermore, appropriate components are selected, and a prototype is manufactured to verify the validity of the proposed theory.


2010 ◽  
Vol 118-120 ◽  
pp. 728-732
Author(s):  
Shu Wen Zhou ◽  
Si Qi Zhang ◽  
Guang Yao Zhao

Tractor semitrailers on high speed obstacle avoidance under emergency are likely to arise rollover or jack-knifing, which are serious risks for motorists. A dynamic stability analysis model of a three-axle tractor semitrailer vehicle is developed using the application tool. The linearized vehicle model is utilized to predict the dynamics state of the tractor semitrailer built in multibody dynamics simulation software. The lateral stability simulation for yaw rate following and anti-rollover has been performed on the dynamic model based on virtual prototyping. The results show that the lateral stability control based on tractor semitrailer proposed in this paper can stabilize the tractor semitrailer, rollover and jack-knifing can be prevented to a large extent.


2017 ◽  
Vol 169 (2) ◽  
pp. 64-70
Author(s):  
Konrad BUCZEK ◽  
Sven LAUER

The continuously increasing mechanical and thermal loads of modern engines require optimization of the designs with incorporation of a wide range of different aspects. Application of advanced computer simulations in the development process for most engine components is well established, leading to the creation of well optimized products. However, the optimization of such design variables ike the firing order, which influences engine operation in several disciplines, is still challenging. Considering the ever increasing peak firing pressure requirements, the layout of the firing order in multi-cylinder commercial engines is an efficient way to reduce crank train / overall engine vibration and main bearing loads, whilst controlling engine balancing and preserving adequate gas exchange dynamics. The proposed general firing order selection process for four-stroke engines and, in particular, its first part being the optimization of the firing order based on crank train torsional vibration, is the main topic of this paper. The exemplary study for a V20 high speed commercial Diesel engine regarding the influence of the firing sequence on crank train torsional vibration has been conducted with the multibody dynamics simulation software “FEV Virtual Engine”. It addresses various engine crankshaft layouts and engine applications.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 474
Author(s):  
Elio Hajj Assaf ◽  
Cornelius von von Einem ◽  
Cesar Cadena ◽  
Roland Siegwart ◽  
Florian Tschopp

Increasing demand for rail transportation results transportation by rail, resulting in denser and more high-speed usage of the existing railway network, making makes new and more advanced vehicle safety systems necessary. Furthermore, high traveling speeds and the greatlarge weights of trains lead to long braking distances—all of which necessitates Long braking distances, due to high travelling speeds and the massive weight of trains, necessitate a Long-Range Obstacle Detection (LROD) system, capable of detecting humans and other objects more than 1000 m in advance. According to current research, only a few sensor modalities are capable of reaching this far and recording sufficiently accurate enoughdata to distinguish individual objects. The limitation of these sensors, such as a 1D-Light Detection and Ranging (LiDAR), is however a very narrow Field of View (FoV), making it necessary to use ahigh-precision means of orienting to target them at possible areas of interest. To close this research gap, this paper presents a novel approach to detecting railway obstacles by developinga high-precision pointing mechanism, for the use in a future novel railway obstacle detection system In this work such a high-precision pointing mechanism is developed, capable of targeting aiming a 1D-LiDAR at humans or objects at the required distance. This approach addresses To address the challenges of a low target pricelimited budget, restricted access to high-precision machinery and equipment as well as unique requirements of our target application., a novel pointing mechanism has been designed and developed. By combining established elements from 3D printers and Computer Numerical Control (CNC) machines with a double-hinged lever system, simple and cheaplow-cost components are capable of precisely orienting an arbitrary sensor platform. The system’s actual pointing accuracy has been evaluated using a controlled, in-door, long-range experiment. The device was able to demonstrate a precision of 6.179 mdeg, which is at the limit of the measurable precision of the designed experiment.


2013 ◽  
Vol 706-708 ◽  
pp. 1379-1384 ◽  
Author(s):  
Xue Heng Tao ◽  
Hui Hui Wang ◽  
Jin Shi Cheng ◽  
Ji Xin Yang ◽  
Xue Jun Wang

A novel kind of double-hemisphere rolling gear globoidal indexing cam mechanism was proposed,which can satisfy high speed and precision motion requirement. Fundamental principle and meshing characteristics were studied based on conjugate surface principle. Pure rolling of the transmision mechanism was applicated in engineering,and combination property was improved.


2013 ◽  
Vol 427-429 ◽  
pp. 606-610
Author(s):  
Xuan Luo ◽  
Gang Hong Zhang ◽  
Ying Xiao ◽  
Wan Lin Gao ◽  
Han Zhang ◽  
...  

This paper describes a physical training device based on SST89C51 MCU and used to solve the current problems in the physical training. It also presents details on how to select materials about the device and how to design the software and hardware. The results show that this system has many advantages, such as high speed, high precision, low cost and stability So it will have good market prospects.


2010 ◽  
Vol 156-157 ◽  
pp. 172-176 ◽  
Author(s):  
Hao Dong Zhao ◽  
Yan Ke Cao ◽  
Pei Quan Guo

Dynamic modelling method for parallel indexing cam mechanism was presented based on multi-body system dynamics according to the analysis of mechanism feature. Rigid-flexible coupled dynamic model was established by means of Adams, Pro/E and Ansys. Dynamic simulation has been done. It follows the analysis of simulation that modified cosine transmission function is not suitable to be applied in high speed, heavy load or precision transmission cases. The effects of load inertia, input speed, and stroke angle to torsional vibration were illustrated corresponding to dynamics simulation.


2021 ◽  
Vol 248 ◽  
pp. 03033
Author(s):  
Xianghui Fan ◽  
Bin Li ◽  
Yongfu Zhang ◽  
Guoqiang Du ◽  
Hua Liu

In order to reasonably match the horizontal and vertical sections of high-speed railway lines, the vehicle-line spatial coupling model of the vertical-circular overlapping line is established, based on the multi-body dynamics simulation software SIMPACK,. The dynamic indexes of train passing through vertical-circular overlapping lines are calculated when the radii of different plane curves match the corresponding superelevation value. The results show that: on the vertical-circular overlapping line, it is suggested that the maximum plane curve radius is 9000m.The existence of the convex vertical-circular overlapping line worsens the safety of train operation and passenger comfort. The existence of the concave vertical-circular overlapping line is the opposite, but it increases rail wear and the workload of maintenance. The vertical-circular overlapping line has the most obvious influence on the vertical acceleration and the vertical Sperling index of the body. The vertical acceleration of the body is superimposed at the plane gentle circle point and the starting point of the vertical curve, which has a great impact on the stability of the train operation.


Author(s):  
J. Rhett Mayor ◽  
Edward Kimn

The demand for miniaturized components is increasing in various industries, such as the biomedical, consumer electronics, optics and defense-related industries. The production of the micro/meso-scale components and parts in these industries is typically undertaken using MEMS-type photolithographic production techniques that have limitations in the materials and geometries that can be produced. However, numerous research efforts during the course of the last five to ten years have developed micro-scale EDM processes, micro-laser processes and micro-machining operations. In particular, the micro-machining processes have been demonstrated to provide a credible solution to the production of micro/mesoscale parts with complexes geometries in a broad range of materials. The development of mMTs is growing with the rapidly increasing demand for tighter tolerances. Traditionally, mMTs have been developed based on horizontal or vertical Cartesian co-ordinate machine tool structures. However, as the need for increased process flexibility and productivity is continuously being driven higher, there is a need to develop higher degree of freedom machining systems, including 4-axis and 5-axis machining centers. In this paper, the design of a low-cost, high-precision, high-speed 4/5-axis micro/meso machining center is presented as a cost-competitive alternative to existing open-form kinematics precision machining centers. A key departure from traditional machine tool design approach that has been adopted in this design is the utilization of closed-form kinematic structural design to create a high-stiffness, low-cost machine tool base. In addition, the lower thermal mass of the mMT base enhances rapid thermal washout in the structure and significantly reduces the thermal gradients in the structure. Consequently the thermal errors present in the structure are limited and simply and adequately handled using existing error compensation strategies. Initial results from an analytical and numerical investigation of the thermo-mechanical response of an innovative, kinematically closed-form inverted micro-machining center are presented. A coarse resolution parametric study was undertaken to evaluate the preferred preferred design space for maximum stiffness and minimum thermal distortion in low-cost, high precision, high-speed micro-machining centers. In addition, in order to facilitate part loading and unloading operations will be considered as a key design characteristic. A key result of this study has been the identification of a preferred design space for kinematic form selection, material selection and structural design options for increased rigidity, reduced thermal error and reduced production costs for flexible 4/5-axis micro/meso-scale machining centers. The proposed mMT design achieves a 3X increase in rigidity over a comparable tradition kinematically open horizontal mMT system.


Sign in / Sign up

Export Citation Format

Share Document