Kinetic Study of PVC Pyrolysis in Air by Thermogravimetric Analysis Using the Friedman Method

2012 ◽  
Vol 427 ◽  
pp. 64-69 ◽  
Author(s):  
Bin Han ◽  
Yu Long Wu ◽  
Wei Feng ◽  
Zhen Chen ◽  
Ming De Yang

The thermal degradation of PVC in air ambience was investigated by the thermogravimetric analysis (TGA). The experiments were carried out at different heating rate of 5, 10, 20 and 40°C/min, respectively. The activation energy was calculated by the Friedman method. The pyrolysis mechanism of PVC in air was discussed and compared with that in Nitrogen atmosphere. The pyrolysis process of PVC in air could be divided into two main stages: 200 °C ~ 380 °C and 400 °C ~ 600 °C, which obtained by TGA at the heating rate of 5°C/min. The second stage could be further subdivided into two parts by 465 °C. It can be concluded that the oxygen in air affected the second stage more obviously than that of the first one, in comparison with inert atmosphere. The activation energy of the second stage was still larger than the first stage.

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiangbo Wang ◽  
Zhong Xin

AbstractThe thermal degradation behaviors of PC/PMPSQ (polymethylphenylsilsesquioxane) systems were investigated by thermogravimetric analysis (TGA) under non-isothermal conditions in nitrogen atmosphere. During non-isothermal degradation, Kissinger and Flynn-Wall-Ozawa methods were used to analyze the thermal degradation process. The results showed that a remarkable decrease in activation energy ( E ) was observed in the early and middle stages of thermal degradation in the presence of PMPSQ, which indicated that the addition of PMPSQ promoted the thermal degradation of PC. Flynn-Wall-Ozawa method further revealed that PMPSQ significantly increased the activation energy of PC thermal degradation in the final stage, which illustrated that the PMPSQ stabilized the char residues and improved the flame retardancy of PC in the final period of thermal degradation process


2018 ◽  
Vol 39 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Dev K. Mandal ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai

AbstractIn this article, the influence of polylactide and pro-oxidant on the thermal stability, degradation kinetics, and lifetime of polypropylene has been investigated using thermogravimetric analysis under nitrogen atmosphere at four different heating rates (i.e. 5, 10, 15, and 20°C/min). The kinetic parameters of degradation were studied over a temperature range of 30–550°C. The derivative thermogravimetric curves have indicated single stage and two stage degradation processes. The activation energy was evaluated by using the Kissinger, Kim-Park, and Flynn-Wall methods under the nitrogen atmosphere. The activation energy value of polypropylene was much higher than that of polylactide. Addition of polylactide and pro-oxidant in polypropylene decreased the activation energy. The lifetime of polypropylene has also decreased with the addition of polylactide and pro-oxidant.


2010 ◽  
Vol 96 ◽  
pp. 245-249 ◽  
Author(s):  
Bin Han ◽  
Yu Long Wu ◽  
Guo Rui ◽  
Wei Feng ◽  
Zhen Chen ◽  
...  

The thermal degradation of PVC resin was examined by the thermogravimetric analysis (TGA). The pyrolysis volatile products were analyzed by Fourier transform infrared spectrometer synchronized with TG test (TG-FTIR). Based on the TG results, the kinetics of thermal degradation was studied by Friedman method. The pyrolysis mechanism was discussed also. The results indicate that the pyrolysis process of PVC can be divided into two main stages: 220°C - 380°C and 380°C - 560°C. By the calculation of mass conservation and TG-FTIR results, it can be supposed that not only HCl, but also some unsubstituted aromatics such as benzene were released during the first stage. The comparison of activation energy shows that the second stage exhibited higher activation energy than the first stage. Two activation energy values in the first stage confirm that there arose two reactions in the first stage.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Xu Qing ◽  
Ma Xiaoqian ◽  
Yu Zhaosheng ◽  
Cai Zilin ◽  
Ling Changming

The thermal degradation characteristics of microalgae were investigated in highly purified N2 and CO2 atmospheres by a thermogravimetric analysis (TGA) under different heating rates (10, 20, and 40°C/min). The results indicated that the total residual mass in CO2 atmosphere (16.86%) was less than in N2 atmosphere (23.12%); in addition, the kinetics of microalgae in N2 and CO2 atmospheres could be described by the pseudo bicomponent separated state model (PBSM) and pseudo-multi-component overall model (PMOM), respectively. The kinetic parameters calculated by Coats-Redfern method showed that, in CO2 atmosphere, the apparent activation energy (E) of microalgae was between 9.863 and 309.381 kJ mol−1 and the reaction order (n) was varied from 1.1 to 7. The kinetic parameters (E,n) of the second stage in CO2 atmosphere were quite similar to those in N2 atmosphere.


2018 ◽  
Vol 26 (7) ◽  
pp. 400-407 ◽  
Author(s):  
Xiaomin Lv ◽  
Jialin Fang ◽  
Jinghan Xie ◽  
Xue Yang ◽  
Jiangbo Wang

The thermal stabilities of epoxy resin/diethyl bis(2-hydroxyethyl)aminomethylphosphonate (EP/DBAMP) systems were investigated by thermogravimetric analysis (TGA) under non-isothermal conditions in nitrogen atmosphere. Kissinger and Flynn–Wall–Ozawa methods were used to study the thermal degradation process. The results showed a remarkable increase of activation energy ( E) in the presence of DBAMP, which indicated that the addition of DBAMP retarded the thermal degradation of EP. The Flynn–Wall–Ozawa analysis further revealed that DBAMP significantly increased the activation energy in the early stage of EP’s thermal degradation, demonstrating that DBAMP had improved the initial thermal stability and modified the flame retardancy of EP in the thermal degradation process.


2018 ◽  
Vol 204 ◽  
pp. 00009 ◽  
Author(s):  
Sukarni Sukarni ◽  
Ardianto Prasetiyo ◽  
Sumarli Sumarli ◽  
Imam Muda Nauri ◽  
Avita Ayu Permanasari

Thermogravimetric analyzer had been occupied to investigate the behavior of co-combustion between microalgae Spirulina platensis and synthetic waste. The powder of microalgae and synthetic waste were mixed in the same ratio of 50/50. Around 10 mg of the sample was heated up in the chamber under air atmosphere flowrate of 100 ml/min at a heating rate of 10 °C/min. The results showed that the sample blend is undergoing thermal degradation in the three stages. The most massive reaction occurred in the second stage in which around 74% of the mass degraded and combusted. The activation energy in the main combustion reaction zone according to the method of Horowitz–Metzger was 57.77 kJ/mol.


2020 ◽  
Vol 55 (4) ◽  
Author(s):  
Subhi A. Al-Bayaty ◽  
Raheem A.H. Al-Uqaily ◽  
Najwa J. Jubier

In this paper, we provide a study of the thermal decomposition behavior of epoxy and epoxy/silica nanoparticle nanocomposites by using thermogravimetric analysis and differential scanning calorimetry techniques at temperatures ranging from 25°C to 600°C, using a constant heating rate of 10°C per minute under inert atmosphere. With increasing silica nanoparticle percentages of 2%, 4%, 6% and 8%, the kinetic parameters of the activation energy, frequency factor, and thermodynamics property were determined at conversion ranges between 20% to 80% using the Coats-Redfern method for diffusion control reaction (Janders) model. The Arrhenius equation for epoxy decomposition at a heating rate of 10°Cper minute equaled 5.7278x e185.984/RT. Thermal decomposition occurred through two stages: (1) with volatile removal and (2) with a random chain break. The effects of variation of silica nanoparticle percentages on glass transition temperature was investigated. The activation energy, frequency factor, rate constant, and other thermodynamic properties increased with additional silica nanoparticle content due to more bonding, as it needed more heat to break.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
N. Aniza ◽  
S. Hassan ◽  
M. F. M. Nor ◽  
K. E. Kee ◽  
Aklilu T.

Thermal degradation of Poultry Processing Dewatered Sludge (PPDS) was studied using thermogravimetric analysis (TGA) method. The effect of particle size on PPDS samples and operational condition such as heating rates were investigated. The non-isothermal TGA was run under a constant flow of oxygen at a rate of 30 mL/min with temperature ranging from 30ºC to 800ºC. Four sample particle sizes ranging between 0.425 mm to 2 mm, and heating rate between 5 K/min to 20 K/min were used in this study. The TGA results showed that particle size does not have any significant effect on the thermogravimetry (TG) curves at the initial stage, but the TG curves started to separate explicitly at the second stage. Particle size may affect the reactivity of sample and combustion performance due to the heat transfer and temperature gradient. The TG and peak of derivative thermogravimetry (DTG) curves tend to alter at high temperature when heating rate is increased most likely due to the limitation of mass transfer and the delay of degradation process. 


2013 ◽  
Vol 575-576 ◽  
pp. 81-86 ◽  
Author(s):  
Feng Ling Ma ◽  
Hui Min Qi ◽  
Ya Ping Zhu ◽  
Xiao Wen Ren ◽  
Fan Wang

The kinetics of the thermal cure and ceramization of preceramic prehydropolysilazane (PHPS) was investigated by thermogravimetric analysis (TGA) under nitrogen atmosphere. The results indicated that the gases captured during the thermal cure and ceramization process of PHPS, which had three main weight loss events. The corresponding kinetic parameters including activation energy, pre-exponential factor and empirical order of the thermal cure and ceramization stages were evaluated by using Ozawa and Kissinger metnods, respectively.


2018 ◽  
Vol 38 (2) ◽  
pp. 9-17
Author(s):  
Alberto Ricardo Albis Arrieta ◽  
Ever Ortiz Muñoz ◽  
Ismael Piñeres Ariza ◽  
Andrés Felipe Suárez Escobar ◽  
Marley Cecilia Vanegas Chamorro

 Using simultaneous thermogravimetrical analysis coupled with mass spectroscopy, the pyrolysis of African palm husk, using several heat rates and programs was performed. Seven relations of mass/charge were followed of the evolved gas of the pyrolysis process, fitting the kinetics and the mass spectroscopy signals to the distributed activation energy model (DAEM) with different numbers of pseudo-components. Fitting with four pseudo-components proved to be the best for modeling the thermal degradation process. Kinetic parameters were not affected by the heating rate or program employed, which agrees with other reports for similar biomass. Methane, methanol formaldehyde, furfural were successfully fitted to the DAEM model, nevertheless CO2 and NO2 were not able to be represented by this model due to its production in secondary reactions in gaseous phase.


Sign in / Sign up

Export Citation Format

Share Document