Preparation and Characterization of Sepiolite Nanofibers by Microwave Chemical Methods

2012 ◽  
Vol 427 ◽  
pp. 82-87 ◽  
Author(s):  
Fei Wang ◽  
Jin Sheng Liang ◽  
Qing Guo Tang ◽  
Cong Chen ◽  
Ya Lei Chen

The sepiolite samples were defibered by using microwave chemical technique, and then different sepiolite samples were obtained with different treatment process. The effect of reaction time on the defibering for sepiolite fiber bundles was studied systematically. Through characterization by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), it was found that the defibered sepiolite samples had an average diameter of about 100 nm and length greater than 20μm. The defibering effect of sepiolite samples as prepared reached optimum at the reaction time of 13 min, and the structural stability of sepiolite was kept after defibering treatment.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Le Thi Vinh ◽  
Tran Thu Huong ◽  
Ha Thi Phuong ◽  
Hoang Thi Khuyen ◽  
Nguyen Manh Hung ◽  
...  

We report on the synthesis and characterization of folic acid-conjugated silica-modified TbPO4·H2O nanorods for biomedical applications. The uniform shape TbPO4·H2O nanorods with a hexagonal phase were successfully synthesized by wet chemical methods. A novel TbPO4·H2O@silica-NH2 nanocomplex was then formed by functionalizing these nanorods with silica and conjugating with biological agents. The field emission scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction reveal the morphology and structure of the nanorods, with their controllable sizes (500-800 nm in length and 50-80 nm in diameter). The Fourier transform infrared spectroscopy was employed to identify chemical substances or functional groups of the TbPO4·H2O@silica-NH2 nanocomplex. The photoluminescence spectra show the four emission lines of TbPO4·H2O@silica-NH2 in folic acid at 488, 540, 585, and 621 nm under 355 nm laser excitation, which could be attributed to the 5D4-7 F j ( J = 6 , 5 , 4 , 3 ) transitions of Tb3+. The TbPO4·H2O@silica-NH2 nanorods were conjugated with folic acid for the detection of MCF7 breast cancer cells. The obtained results show a promising possibility for the recognition of living cells that is of crucial importance in biolabeling.


2013 ◽  
Vol 832 ◽  
pp. 596-601 ◽  
Author(s):  
N.A.M. Asib ◽  
Aadila Aziz ◽  
A.N. Afaah ◽  
Mohamad Rusop ◽  
Zuraida Khusaimi

Needle-like zinc oxide (ZnO) nanostructures was deposited on titanium dioxide (TiO2) nanoparticles by solution-immersion method and Radio Frequency (RF) magnetron sputtering with diffferent RF powers, respectively on a glass substrate to synthesis nanocomposites of ZnO/TiO2. Field Emission Scanning Electrons Microscope (FESEM) images demonstrate that needle-like ZnO (112-1110 nm) are deposited on the surface of the TiO2nanoparticles with the diameter of approximately 36.3-62.9 nm. At 200 W, more needle-like ZnO with smallest average diameter (112 nm) appeared on the TiO2nanoparticles, which also has the smallest average size of 36.3 nm The compositions of elements in the nanocomposites were showed by Energy Dispersive X-ray Spectrometry (EDX). All elements of Ti, O, and Zn are observed as major components which confirm the presence of TiO2and ZnO in the composite. X-ray Diffraction (XRD) patterns of the nanocomposites show ZnO formed on TiO2nanoparticles are hexagonal with a wurtzite structure and it revealed ZnO/TiO2thin films were succesfully deposited as nanocomposites of ZnTiO3at 100 W,Zn2TiO4at 150 W and Zn2Ti3O8at 200 W and above.


2007 ◽  
Vol 1006 ◽  
Author(s):  
Saima Khan ◽  
Aurangzeb Khan ◽  
Martin E. Kordesch

AbstractSilicon Carbide (SiC) nanofibers were synthesized from SiC powder dispersed in polyethylene oxide (PEO) solution in Chloroform using the electrospinning technique. The as-spun fibers were then annealed at 1000ËC to 7 hours. The average diameter of the annealed fibers is 500 nm while the length of the annealed fibers is about 50 µm. The fibers were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) and Cathodoluminescence (CL). PL spectra from the annealed SiC fibers show a broad emission in the red-infrared spectral regime. The main peak is centered at 774 nm while the shoulder on the left is at 740 nm


1997 ◽  
Vol 495 ◽  
Author(s):  
Kirsty A. Fleeting ◽  
Tony C. Jones ◽  
Tim Leedham ◽  
M. Azad Malik ◽  
Paul O'brien ◽  
...  

ABSTRACTMOCVD is a useful method for the deposition of thin films of lead zirconium titanate, PZT, because of its good step coverage and control of composition. Results are herein presented on a number of novel compounds which are potential MOCVD precursors. The compounds studied include Pb(tmhd)2, Zr(OBu')4 and Ti(OPr')4. Another commonly utilized precursor Zr(tmhd)4, is not ideal, in that it is a high melting point solid, and hence requires high substrate temperatures. We have sought to modify Zr precursors through chemical methods and have synthesized a number of novel, more volatile, and less intrinsically thermally stable MOCVD precursors. Full chemical characterization of the Zr precursors (NMR, IR, MS, CHN, TGA/DSC, Single Crystal X-ray diffraction) has been undertaken. We also present structural results on some related lead precursors.


2013 ◽  
Vol 631-632 ◽  
pp. 306-309 ◽  
Author(s):  
Ya Ru Cui ◽  
Jiang Shan He ◽  
Xiao Ming Li ◽  
Jun Xue Zhao ◽  
Ao Li Chen ◽  
...  

In this work, MoS2 microsphere was synthesized by hydrothermal reaction, in which thiourea (CS(NH2)2) was used as S-source and reducing agent, ammonium heptamolybdate ((NH4)6Mo7O24.4H2O) was used as Mo-source. The influence of temperature, as well as different dispersing agents, on the reaction product’s morphology, structure and phase composition was discussed. X-ray diffraction results show that all the as-synthesized products are the hexagonal 2H-MoS2 without impurity. SEM images of the as-prepared MoS2 samples without adding any dispersing agent present spherical morphology with sheet-like structures shaped on the surface. A possible formation mechanism of the MoS2 microsphere is that of self-assembly growth process; In addition, for the samples adding surfactant CTAB, SDBS or PVP in the reactants, the MoS2 is confined to layered structure. Compared with SDBS and PVP, CTAB has the best dispersion effect which ensure the as-synthesized microsphere with about 300nm average diameter, and the influence mechanism of which can be deduced as electrostatic interaction and stereo-hindrance effect.


2012 ◽  
Vol 576 ◽  
pp. 212-215 ◽  
Author(s):  
R.M. Manshor ◽  
Hazleen Anuar ◽  
Wan Busu Wan Nazri ◽  
M.I. Ahmad Fitrie

Durian skin fibres (DSF) are cellulose-based fibres extracted from the durian peel. This paper present the physical behaviour, chemical structure and crystallinity of the fibres, as observed by environmental scanning electron microscope (ESEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The characteristic of the natural fibers produces from durian skins are similar with other types of natural fiber. The average diameter and density are 0.299 mm and 1.243 g/cm3, respectively while the crystallinity index is slightly higher than the common fibers. The properties and charecteristic of durian skin fibers are within the propertise of lignocellulosic fiber which is suitable for development of biocomposite materials.


2016 ◽  
Vol 881 ◽  
pp. 212-217
Author(s):  
Karine Castro Nóbrega ◽  
Luciana Viana Amorim

This project had as objective to evaluate the influence of the content and particle size of the calcite in the filtration properties of clay dispersions. For that, it was realized the characterization of a bentonite clay sample using X-Ray Fluorescence and X-Ray Diffraction. In addition, two samples of calcite (CaCO3) were granulometrically analyzed by Laser Diffraction. The dispersions were prepared with fixed concentration of clay (10g) and different concentrations of carboxymethylcellulose of low viscosity (0 to 2g), and calcite (0 to 20g). After 24 hours of repose, it were determined the filtration properties (filtrate volume (FV), mudcake thickness (h), and mudcake permeability (k)). It was observed that the lowest filtrate volume was acquired using CaCO3 sample with the lowest average diameter, and, also, a bigger concentration of calcite was not able to promote a considerable reduction of the filtrate.


2016 ◽  
Vol 701 ◽  
pp. 265-269 ◽  
Author(s):  
Md Shariful Islam ◽  
Fayeka Mansura ◽  
Amalina Muhammad Afifi ◽  
Bee Chin Ang

In this study, poly (vinyl alcohol) / chitosan blend nanofibers were synthesized by electrospinning process in different polyvinyl alcohol and chitosan weight ratios. The nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM images showed that, 50:50 poly vinyl alcohol/chitosan blend was the ideal ratio for producing beadless nanofiber. The average diameter of the beadless nanofiber was found to be 123 nm. FTIR and XRD results demonstrated the presence of intermolecular hydrogen bonding between the molecules of poly vinyl alcohol and chitosan.


2011 ◽  
Vol 312-315 ◽  
pp. 423-426 ◽  
Author(s):  
M. Mohebali ◽  
Ali Shokuhfar

Hydroxyapatite (HA) is a bioactive ceramic, employed mainly in bone tissue engineering since it exhibits superior biocompatibility and osteoconductivity. Attempts have been made to synthesize HA nanoparticles with chemical composition, morphology, crystallinity and Ca/P ratio similar to that of natural bone. While wet chemical methods are becoming more popular for synthesis of HA nanoparticles, ultrasound irradiation has shown to be an effective method to increase the rate of production and also to decrease particle size. However, process variables must be carefully selected. In the present study, HA nanoparticles with desirable characteristics have been synthesized by the aid of ultrasound irradiation and characterized by powder X-ray diffraction (XRD) and electron microscopy techniques.


2014 ◽  
Vol 912-914 ◽  
pp. 318-320 ◽  
Author(s):  
Yin Xia Chen ◽  
Xian Bing Ji ◽  
Yu Lian Quan

Hierarchical calcium carbonate spheres composed of nanoparticles has been successfully synthesized via a solvothermal process. The structures are fabricated by the reaction of Ca (CH3COO)2with (CO(NH2)2) at 110 °C in diethylene glycolwater mixed solvents in the presence of polyvinylpyrrolidone. The as-prepared products were characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The characterization results revealed that the average diameter of the hierarchical calcium carbonate spheres is about 5 μm, and the size of the nanoparticals range from 50 to 100 nm. In addition, a small amount of bundle-like aragonite calcium carbonate is also obtained in the experimental parameters.


Sign in / Sign up

Export Citation Format

Share Document