Effect of Mould Vibration on Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

2012 ◽  
Vol 445 ◽  
pp. 475-480 ◽  
Author(s):  
Muhammad Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
M.K.A.M. Arifin ◽  
Thoguluva Raghavan Vijayaram ◽  
...  

This paper focuses on the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite subjected to mould vibration during solidification. In this experimental study, mould vibration is applied to TiC particulate reinforced LM6 alloy matrix composites with a wide range of frequencies. TiC particulate reinforced LM6 alloy matrix composites are fabricated by adding different particulate weight fraction of TiC in the matrix by carbon dioxide molding process. Mechanical properties such as tensile strength, hardness, are determined and microstructural features are analyzed through SEM. Besides, fracture surface analysis has been performed to characterize the morphological aspects of the test samples after tensile testing. Preliminary works show that the mechanical properties have been improved with 10.2Hz frequency when compared with the gravity sand-castings without vibration.

2011 ◽  
Vol 471-472 ◽  
pp. 721-726 ◽  
Author(s):  
Mohd Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
Mohd Khairol A. Arifin ◽  
S. Suraya ◽  
...  

The effects of subjecting solidifying particulate reinforced aluminium alloy matrix composite to various sources of vibration on the resulting casting quality, a mechanical vibration technique for inducing vibration resulting in enhanced mechanical properties, such as impact properties is devised. TiC particulate reinforced LM6 alloy matrix composites are fabricated by different particulate weight fraction of titanium dioxide and microstructure studies were conducted to determine the impact strength and density, respectively. Preliminary works show that the mechanical properties have been improved by using vibration mold during solidification compared to gravity castings without vibration.


2011 ◽  
Author(s):  
M. Sayuti ◽  
S. Sulaiman ◽  
B. T. H. T. Baharudin ◽  
M. K. A. Arifin ◽  
S. Suraya ◽  
...  

2014 ◽  
Vol 612 ◽  
pp. 151-155 ◽  
Author(s):  
S Dhinakaran ◽  
T.V. Moorthy

Aluminium matrix composites (AMCs) play a vital role as advanced engineering materials due to their excellent mechanical properties like light weight, strength, wear resistance, toughness. This work focuses on the fabrication of aluminium (AA6061) matrix composites reinforced with 3%, 6% and 9% B4C particle of 104μm using stir casting method. The wettability of B4C particles in the matrix has been improved by adding K2TiF6flux in to the molten metal. The microstructure and mechanical properties of the fabricated AMCs are analyzed. Uniform distribution of B4C particle in the matrix was confirmed using scanning electron microscope (SEM) images. It was found that the tensile strength and hardness of the fabricated AMCs increases with increased B4C particle content.


2012 ◽  
Vol 445 ◽  
pp. 475-480
Author(s):  
Muhammad Sayuti ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
M.K.A Arifin ◽  
Thoguluva Raghavan Vijayaram ◽  
...  

Author(s):  
C. Krishnaraj ◽  
P. Divinesh ◽  
O.M. Mohaideen

The modern vehicles demand more thermal and mechanical properties as the speed of the vehicles is increasing. The materials used should be able to not only withstand the high temperatures but to dissipate it at a faster rate without deformation. This paper investigates the characteristics of silicon carbide (SiC) and fly ash in LM13 aluminium alloy matrix composite prepared by stir casting. The LM13 alloy has high thermal property which makes it ideal for making engines and gears. The effect of fly ash and SiC on LM13 and its influence on increasing the surface roughness was analyzed by varying their proportion. The addition of SiC and fly ash to the matrix composite increases the hardness and tensile strength of the composite which is validated by experimental results.


2016 ◽  
Vol 61 (1) ◽  
pp. 323-328 ◽  
Author(s):  
J. Wieczorek ◽  
B. Oleksiak ◽  
J. Łabaj ◽  
B. Węcki ◽  
M. Mańka

Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs) were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting) technology, followed by plastic work (the KOBO method). The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.


2014 ◽  
Vol 903 ◽  
pp. 145-150 ◽  
Author(s):  
Sulaiman Suraya ◽  
Shamsuddin Sulaiman ◽  
Ali Munira ◽  
Abdul Aziz Fazilah

In this research, metal-matrix composites (MMCs) of aluminium-11.8% silicon alloy matrix reinforced with titanium carbides particulates were fabricated by the casting technique. Aluminium-11.8% silicon alloy is selected as the matrix material and titanium carbide as particulates are mixed in different weight percentages, 5%, 10%, 15% and 20%wt. The cylinder composite castings are made by pouring the composite mixture in copper permanent-molds. The microstructure and mechanical properties of these composite materials were investigated. The effects of reinforced materials on weight percentages addition of particulate on the particulate distribution in aluminium-11.8% silicon alloy composites and SEM observation of the fracture surfaces of tensile tested specimens were deliberate. Moreover, cylinder castings without particulate addition are made and compared with the result based on the properties and microstructural features. It is found that the microstructure and mechanical properties of composites significantly improved by the use of particle reinforced into aluminium alloy.


Powder metallurgy is one of the best methods to achieve uniform distribution of reinforcement in to the matrix. In this Paper, characterization of microstructure and hardness of aluminum alloy matrix composites reinforced with boron fiber particles prepared by powder metallurgy technique are investigated. The effects of boron fiber (Coarse particles size of 120 µm and Fine particles size of 50 µm) on mechanical properties were studied. Increasing the reinforcement of boron fiber content with 5%, 10% and15% into the matrix improved the mechanical properties. The percentage of boron fiber reinforcement increasing the strength of the hardness number is also increasing simultaneously, the aluminum alloys and boron fiber particles on the microstructure and mechanical properties of the composites were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with Energy dispersive spectrum (EDS) analyses indicated. Analysis and observing microstructure of the composite is boron fiber particles are uniformly dispersed in the aluminum alloy matrix composites.


2021 ◽  
Vol 130 ◽  
pp. 107057
Author(s):  
A.W. Zhao ◽  
X. Luo ◽  
Z.L. Ye ◽  
X. Guo ◽  
B. Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document