Effect of TiC Particulates on the Microstructure and Mechanical Properties of Aluminium-Based Metal Matrix Composite

2014 ◽  
Vol 903 ◽  
pp. 145-150 ◽  
Author(s):  
Sulaiman Suraya ◽  
Shamsuddin Sulaiman ◽  
Ali Munira ◽  
Abdul Aziz Fazilah

In this research, metal-matrix composites (MMCs) of aluminium-11.8% silicon alloy matrix reinforced with titanium carbides particulates were fabricated by the casting technique. Aluminium-11.8% silicon alloy is selected as the matrix material and titanium carbide as particulates are mixed in different weight percentages, 5%, 10%, 15% and 20%wt. The cylinder composite castings are made by pouring the composite mixture in copper permanent-molds. The microstructure and mechanical properties of these composite materials were investigated. The effects of reinforced materials on weight percentages addition of particulate on the particulate distribution in aluminium-11.8% silicon alloy composites and SEM observation of the fracture surfaces of tensile tested specimens were deliberate. Moreover, cylinder castings without particulate addition are made and compared with the result based on the properties and microstructural features. It is found that the microstructure and mechanical properties of composites significantly improved by the use of particle reinforced into aluminium alloy.

2015 ◽  
Vol 813-814 ◽  
pp. 195-202 ◽  
Author(s):  
T. Lokesh ◽  
U.S. Mallikarjun

Abstract. In recent years, Aluminium alloy based metal matrix composites (MMC) are gaining wide spread acceptance in several aerospace and automobile applications. These composites possess excellent wear resistance in addition to other superior mechanical properties such as strength, modulus and hardness when compared with conventional alloys. The hybrid composites are new generation of composites containing more than one type, shape or sizes of reinforcements giving superior combined properties of reinforcements and the matrix. In the present work, Al6061 has been used as matrix material and the reinforcing materials selected were SiC and Graphite particulates of 10 to 30µm size. Composites Al6061-Gr (2- 8 wt. %), Al6061-SiC (2 -10wt. %) and Hybrid composites with Al6061 matrix alloy containing 3wt% graphite and varying composition of 2-10wt% SiCp were prepared by stir casting technique. The cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530 ± 20C for 6 hours, followed by ageing at a temperature of 175 ± 20C for 6 hours. The mechanical properties of as cast and T6 heat treated composites have been evaluated as per ASTM standards and compared. Addition of Graphite particulates into the Al6061 matrix improved the strength and ductility of the composites. Significant improvement in tensile strength and hardness was noticed as the wt. % of SiCp increases in Al6061-SiC composites. Addition of Graphite into Al6061-SiC further improved the strength and ductility of hybrid composites. The heat treatment process had the profound effect in improving the mechanical properties of the studied composites. The microstructural studies revealed the uniform distribution of SiC and Gr particles in the matrix system.


2021 ◽  
Vol 130 ◽  
pp. 107057
Author(s):  
A.W. Zhao ◽  
X. Luo ◽  
Z.L. Ye ◽  
X. Guo ◽  
B. Huang ◽  
...  

2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


1994 ◽  
Vol 3 (2) ◽  
pp. 096369359400300
Author(s):  
Lun X. He ◽  
David K. Hsu ◽  
John P. Basart

In continuous fiber reinforced metal matrix composites, the volume fraction of voids in the matrix material is an important parameter for material property characterization. In analyzing a cross-sectional micrograph of such a composite, the presence of fiber images and voids occurring on the perimeter of fibers complicates the determination of void content. This paper describes image processing steps using mathematical morphology for the extraction of void fraction in a composite.


Sign in / Sign up

Export Citation Format

Share Document