Sintering Effect on Boron Based Bioglass Doped Composites of Bovine Hydroxyapatite

2012 ◽  
Vol 445 ◽  
pp. 982-987 ◽  
Author(s):  
Oguzhan Gunduz ◽  
Zeeshan Ahmad ◽  
S. Salman ◽  
Ahmet Talat Inan ◽  
Nazmi Ekren ◽  
...  

The use of bovine hydroxyapatite (BHA) provides an alternative approach in bioceramics based on natural resources, time and cost efficiency. In this study, composites of calcinated bovine derived BHA were utilized. These were doped with known quantities of boron based bioglass (5 and 10 wt. %) and a range of composites were prepared at selected sintering temperatures (1000-1300 °C). The resulting structures were tested for several mechanical properties (porosity, compression and microhardness). Micro-structural analysis (electron microscopy and x-ray diffraction) was also performed on these samples, and these findings were correlated with results obtained from mechanical tests. The results indicate that there is a positive correlation between compression strength and sintering temperature and the optimal properties are obtained at a temperature of 1200°C and a boron oxide bioglass doping content of 5 wt. %.

2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2015 ◽  
Vol 655 ◽  
pp. 68-71
Author(s):  
Yuan Yuan Zhu ◽  
Jin Jia ◽  
Ai Guo Zhou ◽  
Li Bo Wang ◽  
Qing Feng Zan

Layered ternary compounds Ti3SiC2combines attractive properties of both ceramics and metals, and has been suggested for potential engineering applications. Near-fully dense Ti3SiC2bulks were sintered from commercial Ti3SiC2powders by hot press at 1350°C-1600°C for 60-120min under Ar atmosphere in this paper. The phase compositions and morphology of the as-prepared samples were evaluated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). And the mechanical properties were measured by Three-Point bending method. It was found that the Ti3SiC2had only a little of decomposition at sintering temperature above 1350°C. And effects of sintering temperature and holding time on the morphology of the bulk Ti3SiC2are not obvious. Relative density of 98% and flexural strength of 480MPa were obtained for the Ti3SiC2samples sintered at 30MPa and 1400°C for 90min.


2007 ◽  
Vol 330-332 ◽  
pp. 47-50
Author(s):  
L.S. Ozyegin ◽  
S. Salman ◽  
Faik N. Oktar ◽  
Simeon Agathopoulos ◽  
Onur Meydanoglu ◽  
...  

Composites of calcinated bovine bone derived hydroxyapatite (HA) with 0.5 and 1 wt% Y2O3 were prepared by sintering. Money and time saving feature the production of HA from natural sources. In this study, results of scanning electron microscopy (SEM) and X-ray diffraction analysis aimed to interpret the results of measurements of densification, microhardness, and compression strength of the produced composites. The best mechanical properties were achieved after sintering at 1200°C for compressive strength and 1300°C for microhardness. The results are in a fair agreement with densification measurements and microstructure analysis.


2006 ◽  
Vol 309-311 ◽  
pp. 45-48 ◽  
Author(s):  
Faik N. Oktar ◽  
H. Aydin ◽  
Gültekin Göller ◽  
Simeon Agathopoulos ◽  
G. Rocha ◽  
...  

The properties of sintered hydroxyapatite (HA), obtained from bovine femoral shafts via calcination method, were investigated utilizing scanning electron microscopy (SEM) and X-ray diffraction analysis together with measurements of microhardness, density, and compression strength. The production of HA from natural sources is preferred due to money and time saving reasons. The results indicate the new HA materials as promissing in biomedicine, since similar mechanical behaviour was obtained with previous studies.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2018 ◽  
Vol 170 ◽  
pp. 03030 ◽  
Author(s):  
Rustem Mukhametrakhimov ◽  
Liliya Lukmanova

The paper studies features of the hydration process of the modified blended cement for fiber cement panels (FCP) using differential thermal analysis, X-ray diffraction analysis, electron microscopy and infrared spectroscopy. It is found that deeper hydration process in silicate phase, denser and finer crystalline structure form in fiber cement matrix based on the modified blended cement. Generalization of this result to the case of fiber cement panels makes it possible to achieve formation of a denser and homogeneous structure with increased physical and mechanical properties.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Ruy A. Sá Ribeiro ◽  
Marilene G. Sá Ribeiro ◽  
Gregory P. Kutyla ◽  
Waltraud M. Kriven

To determine the viability of using a local resource for geopolymer synthesis, geopolymers were synthesized using metakaolin made from clay mined in the Amazonian region of Brazil. Samples were made with mixed potassium-sodium and pure sodium metakaolin-based geopolymer. Samples were also made using commercial metakaolin (CMK) from BASF, Inc. as a comparison to the Amazonian metakaolin (AMK). Scanning electron microscopy was used to investigate the microstructure of the materials. X-ray diffraction was able to confirm the formation of geopolymer. The mechanical properties of AMK material were nearly equivalent to those based on CMK. Neither CMK nor AMK reacted completely, although samples made with CMK showed less unreacted material. By increasing the mixing intensity and duration, the amount of residual unreacted material was substantially reduced, and mechanical properties were improved.


Sign in / Sign up

Export Citation Format

Share Document