Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition

2012 ◽  
Vol 460 ◽  
pp. 300-303 ◽  
Author(s):  
Qing Hua Tian ◽  
Li Zhen Cheng ◽  
Jing Xin Liu ◽  
Xue Yi Guo

Fine zinc powder with dendritic microstructure is applied in preparation of cathode of zinc-air battery. Based on a series of experiments, the electrodeposition was determined for the preparation of zinc powder with dendritic microstructure in the solution system of Zn2+-NH4+-SO42--H2O. The main factors affecting the process such as current density、temperature、concentration of reactants and schedule of brushing powder were investigated comprehensively. The optimal process conditions are15g/L Zn2+, 30~40g/L(NH4)2SO4, 800 Am-2current density at 30°C,with the schedule of brushing powder is 2 minutes. Based on the test results the optimal conditions, fine zinc powder with dendritic microstructure can be fabricated by electrodeposition.

2022 ◽  
Vol 2152 (1) ◽  
pp. 012027
Author(s):  
Yong-guang Bi ◽  
Yu-hong Zheng ◽  
Li Tang ◽  
Juan Guo ◽  
Shao-Qi Zhou

Abstract Due to the complex quality and the large discharge of printing and dyeing wastewater, it will pollute the environment and affect human health. Therefore, how to use efficient and inexpensive treatment methods to treat printing and dyeing wastewater has become an urgent problem to be solved. At present, most printing and dyeing wastewater contains methylene blue pollutants. Based on the previous research in this article, the process conditions for the enhanced degradation of methylene blue by trough ultrasound are optimized. Orthogonal test results show that the optimal process parameter for the degradation of methylene blue by trough ultrasonic is pH 12.70, and the initial With a concentration of 10.00mg/L and an ultrasonic power of 200W, under the above optimal process conditions, the degradation rate of methylene blue is 77.95%; Ultrasound improves the rapid degradation of methylene blue through mechanisms such as cavitation, thermal and mechanical effects. This process can be used for the industrial degradation of methylene blue. The application provides a research basis.


2011 ◽  
Vol 311-313 ◽  
pp. 223-226
Author(s):  
Mei Mei Wang ◽  
Mei Cao ◽  
Zhong Cheng Guo

Ti/Pb-WC-PANI inert electrodes was prepared by pulse electroplating. The effects of process conditions and concentration of solid particles on kinetic parameters of oxygen evolution, appearance of coating and deposition rate was studied and the process of electroplating was optimized. The optimal process conditions were as follows: PANI 30 g/L, WC 40 g/L, pulse on-time 0.5 ms, pulse period 1.5 ms, average current density 2 A•dm-2, bath temperature 25 °C.


2013 ◽  
Vol 448-453 ◽  
pp. 775-779
Author(s):  
Hui Shuan Dong ◽  
Qi Feng Wei ◽  
Xiu Lian Ren ◽  
Hui Ju

A new solvent extraction method recycling the acrylic acid (AA) from industrial waste fluid for producing acrylic acid was studied. The influencing factors of the species of diluents, concentration of extractant and temperature were investigated. The optimal process conditions were chosen that the 1-octanol as diluents, the concentration of tri-n-octylamine (TOA) 0.87mol/L, reaction temperature 298K after a series of experiments and analysis. The kinetics of extraction was studied by Lewis cell, the rate equation of extraction could be expressed as: RA=8.8×10-2[AA]1.5[TOA]2.1.


2019 ◽  
Vol 946 ◽  
pp. 380-385
Author(s):  
Boris A. Chaplygin ◽  
Viacheslav V. Shirokov ◽  
Tat'yana A. Lisovskaya ◽  
Roman A. Lisovskiy

The strength of abrasive wheels is one of the key factors affecting the performance of abrasive machining. The paper discusses ways to improve the strength of abrasive wheels. The stress-state mathematical model presented herein is a generalization of the existing models. It is used herein to find for the first time that there are numerous optimal combinations of the elastic modulus and reinforcing material density, which result in the same minimum value of the objective function. It is found out that increasing the radius of the reinforcing component while also optimizing the mechanical properties of its material may increase the permissible breaking speed of the wheel several times. We herein present a regression equation and a nomogram for finding the optimal combination of control factors. Conventional methods for testing the mechanical properties of materials, which have been proven reliable for testing metals and alloys, are not as reliable for testing abrasive materials, as the test results they generate are not sufficiently stable or accurate. We therefore propose an alternative method that does not require any special equipment or special studies.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 670
Author(s):  
Preeda Chaturabong

Chip seal bleeding is influenced by many factors, including design inputs, material properties, and project-specific conditions. It reduces the surface texture of the pavement and thus compromises the safety of the traveling public. Even though factors that bring about premature bleeding are known, currently, no laboratory test methods for evaluating bleeding in chip seals have been specified. The objective of this paper is to present the results of an investigation of the influence factors of asphalt emulsion residue properties measured by the ASTM D7405 multiple stress creep and recovery (MSCR) test, as well as other factors related to chip seal bleeding resistance as measured by the modified loaded wheel test (MLWT). In this study, the MSCR test was used as a tool for evaluating the performance of asphalt emulsions because it has been identified as a potential test related to bleeding in the field. In addition, MLWT was selected as a tool for evaluating chip seal bleeding performance in the laboratory. The results of the MLWT showed that the emulsion application rate (EAR), aggregate gradation, and emulsion properties were significant factors affecting bleeding. The MSCR test was found to be a promising tool for the performance evaluation of asphalt emulsion residue, as the test was able to differentiate between emulsion chemistries and modifications in terms of sensitivity to both temperature and stress. In relation to chip seal bleeding resistance, only the creep compliance (Jnr) obtained from the MSCR test results was identified as a significant property affecting potential for bleeding.


2012 ◽  
Vol 212-213 ◽  
pp. 1057-1061 ◽  
Author(s):  
Zhong Liu ◽  
Zhu Qing Huang ◽  
Shu Yun Zou ◽  
Hong De Rao

The 3# bulb turbine in Hongjiang Hydropower Plant has faced the problem of output deficiency since its commission in Sept. 2003, which caused a large economic loss. Following simple theoretical analyses on the main factors affecting the turbine’s output and efficiency, the field test schemes were determined to measure the shapes and intervals of guide vanes and runner blades of the 3#, 5# and 6# turbines. The test results discover that the average blade intervals of the 3# turbine are generally less than those of the 5# one. Suggestions on runner blade installation adjustment and combined curve modification are given.


2012 ◽  
Vol 524-527 ◽  
pp. 1078-1081
Author(s):  
Jian Guo Song ◽  
Xin Zhi Wang ◽  
Shao Dan Xiao ◽  
Wei Liu

This article aims to study the technology of extracting potassium from potassium feldspar with molten salt leaching method and to analyze the effects of temperature, reaction time and other factors on extracting potassium, concluding the optimal process conditions of extracting potassium with molten leaching method from potash feldspar.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 946
Author(s):  
Chunlian Wang ◽  
Xiaojie Sun ◽  
Huijun Shan ◽  
Hongxia Zhang ◽  
Beidou Xi

This study explored the performance of TiO2 nanoparticles in combination with aged waste reactors to treat landfill leachate. The optimum conditions for synthesis of TiO2 were determined by a series of characterizations and removal rates of methyl orange. The effect of the ultraviolet irradiation time, amount of the catalyst, and pH on the removal efficiency for the chemical oxygen demand (COD) and color in the leachate was explored to determine the optimal process conditions, which were 500 min, 4 g/L and 8.88, respectively. The removal rates for COD and chroma under three optimal conditions were obtained by the single factor control method: 89% and 70%; 95.56% and 70%; and 85% and 87.5%, respectively. Under optimal process conditions, the overall average removal rates for ammonium nitrogen (NH4+–N) and COD in the leachate for the combination of TiO2 nanoparticles and an aged waste reactor were 98.8% and 32.5%, respectively, and the nitrate (NO3−–N) and nitrite nitrogen (NO2–N) concentrations were maintained at 7–9 and 0.01–0.017 mg/L, respectively. TiO2 nanoparticles before and after the photocatalytic reaction were characterized by emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectrometry. In addition, TiO2 nanoparticles have excellent recyclability, showing the potential of the photocatalytic/biological combined treatment of landfill leachate. This simulation of photocatalysis-landfilling could be a baseline study for the implementation of technology at the pilot scale.


Sign in / Sign up

Export Citation Format

Share Document