Mechanical Design and Control Issues of a Dexterous Robotic Hand

2012 ◽  
Vol 463-464 ◽  
pp. 1268-1271 ◽  
Author(s):  
Cosmin Berceanu ◽  
Daniela Tarniţă

The design and control problems involved in the development process of robotic grippers have been active research topics in the last three decades. In this paper it is presented a new developed dexterous robotic hand whose mechanical structure is based on a biomechatronic approach. The control system for this artificial hand relies on modern software and hardware components which allow precise positioning of the fingers.

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Haosen Yang ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian ◽  
Kunyang Wang ◽  
...  

Abstract This paper presents the design, analysis, and development of an anthropomorphic robotic hand coined MCR-hand II. This hand takes the advantages of both the tendon-driven and linkage-driven systems, leading to a compact mechanical structure that aims to imitate the mobility of a human hand. Based on the investigation of the human hand anatomical structure and the related existing robotic hands, mechanical design of the MCR-hand II is presented. Then, using D-H convention, kinematics of this hand is formulated and illustrated with numerical simulations. Furthermore, fingertip force is deduced and analyzed, and mechatronic system integration and control strategy are addressed. Subsequently, a prototype of the proposed robotic hand is developed, integrated with low-level control system, and following which empirical study is carried out, which demonstrates that the proposed hand is capable of implementing the grasp and manipulation of most of the objects used in daily life. In addition, the three widely used tools, i.e., the Kapandji score test, Cutkosky taxonomy, and Kamakura taxonomy, are used to evaluate the performance of the hand, which evidences that the MCR-hand II possesses high dexterity and excellent grasping capability; object manipulation performance is also demonstrated. This paper hence presents the design and development of a type of novel tendon–linkage-integrated anthropomorphic robotic hand, laying broader background for the development of low-cost robotic hands for both industrial and prosthetic use.


2005 ◽  
Vol 10 (3) ◽  
pp. 255-265 ◽  
Author(s):  
GIL WEINBERG

Informed by a proposed theoretical framework for the field of interconnected musical networks (Weinberg 2005), I describe a set of local musical networks that utilise novel gestural controllers for interdependent collaborative performance. The paper begins by contextualising developments in the field of musical networks in correlation with development of technological innovations, leading to the utilisations of gestural controllers in local musical networks. This introduction leads to the definition and categorisation of theoretical and practical approaches for the design of local gestural networks, addressing motivations, social strategies, network architectures, musical content, and control software and hardware. Based on this theoretical framework I describe the evolution of four local musical networks that utilise newly developed gestural controllers, titled ‘Squeezables’, ‘Musical Fireflies’, ‘Beatbugs’ and ‘Voice Patterns’. The paper discusses the design and development process of these projects and ends with a comparative analysis of the networks and controllers based on conceptual and practical criteria.


2018 ◽  
Vol 18 (01) ◽  
pp. e04 ◽  
Author(s):  
Rodrigo E. Russo ◽  
Juana G. Fernández ◽  
Raúl R. Rivera

The development of robotic hand prosthetic aims to give back people with disabilities, the ability to recover the functionality needed to manipulate the objects of their daily environment. The electrical signals sent by the brain through the nervous system are associated with the type of movement that the limbs must execute. Myoelectric sensors are non-intrusive devices that allow the capture of electrical signals from the peripheral nervous system. The relationship between the signals originated in the brain tending to generate an action and the myoelectric ones as a result of them, are weakly correlated. For this reason, it is necessary to study their interaction in order to develop the algorithms that allow recognizing orders and transform them into commands that activate the corresponding movements of the prosthesis.The present work shows the development of a prosthesis based on the design of an artificial hand Open Bionics to produce the movements, the MyoWare Muscle sensor for the capture of myoelectric signals (EMG) and the algorithm that allows to identify orders associated with three types of movement. Arduino Nano module performs the acquisition and control processes to meet the size and consumption requirements of this application.


2018 ◽  
Vol 4 (5) ◽  
pp. 7
Author(s):  
Shivam Dwivedi ◽  
Prof. Vikas Gupta

As the four-wheel steering (4WS) system has great potentials, many researchers' attention was attracted to this technique and active research was made. As a result, passenger cars equipped with 4WS systems were put on the market a few years ago. This report tries to identify the essential elements of the 4WS technology in terms of vehicle dynamics and control techniques. Based on the findings of this investigation, the report gives a mechanism of electronically controlling the steering system depending on the variable pressure applied on it. This enhances the controlling and smoothens the operation of steering mechanism.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Author(s):  
Saeed Ebrahimi ◽  
Jo´zsef Ko¨vecses

In this paper, we introduce a novel concept for parametric studies in multibody dynamics. This is based on a technique that makes it possible to perform a natural normalization of the dynamics in terms of inertial parameters. This normalization technique rises out from the underlying physical structure of the system, which is mathematically expressed in the form of eigenvalue problems. It leads to the introduction of the concept of dimensionless inertial parameters. This, in turn, makes the decomposition of the array of parameters possible for studying design and control problems where parameter estimation and sensitivity is of importance.


2014 ◽  
Vol 654 ◽  
pp. 187-190 ◽  
Author(s):  
Hong Hua Zhao ◽  
Jian Ying Tian ◽  
Dong Song Li ◽  
Chang Sheng Ai

Clinical treatment for mandible defects is Mandible Reconstruction Surgery (MRS) including bone grafts, distraction osteogenesis and bone tissue engineering, however, MRS is operated by doctors without 3D navigation at present which leads to lots of disadvantages such as bad operational control, low positioning accuracy and poor stability. Therefore, a robotic surgical system was designed to assist surgeons on manipulating. For this study, the robot system was given in brief, then mechanical design and control system of the novel three-arm robot.And experiment results in this study show that the robot works stably and accurately. The development of this medical robot system contributes to the promotion and popularization of the MRS in clinics.


Sign in / Sign up

Export Citation Format

Share Document