Fabrication of Nano Particles on Vertically Aligned Multi-Wall Carbon Nanotubes by E-Beam Evaporation

2008 ◽  
Vol 47-50 ◽  
pp. 1526-1531
Author(s):  
Tung Feng Hsieh ◽  
Chia Chih Chuang ◽  
Yu Chuan Chou ◽  
Chi Min Shu

A novel composite electrode-containing gold/platinum nanoparticles on the vertically aligned multi-wall nanotubes (MWCNTs) by electron beam evaporation (e-beam evaporation) is reported herein. The gold/platinum nanoparticles were less than 10 nm, and distributed uniformly on the surface of vertically aligned MWCNTs under the control of e-beam evaporation. The composite electrodes could be applied in the field of biomedical sensor and energy storage devices. This process was straightforward and contained high specific surface areas of gold/platinum nanoparticles on the MWCNTs. It was helpful to enhance the efficiency of organic fuel decomposition as well as advance the sensor precision. In addition, the nanoparticles on the MWCNTs could also facilitate the high electron mobility and chemical stability.

2021 ◽  
Author(s):  
Yuqi Zhao ◽  
Qingjie Fu ◽  
Xiaoqian Cui ◽  
Hui Chi ◽  
Yongzhuang Lu ◽  
...  

The sensor is based on the peroxidase-like activity of Au@PtNPs. Thiourea can quickly be detected by the color change of the solution. The method was applied to the determination of thiourea in practical samples.


2022 ◽  
Vol 9 ◽  
Author(s):  
Adriana M. Navarro-Suárez ◽  
Milo S. P. Shaffer

Structural energy storage devices (SESDs), designed to simultaneously store electrical energy and withstand mechanical loads, offer great potential to reduce the overall system weight in applications such as automotive, aircraft, spacecraft, marine and sports equipment. The greatest improvements will come from systems that implement true multifunctional materials as fully as possible. The realization of electrochemical SESDs therefore requires the identification and development of suitable multifunctional structural electrodes, separators, and electrolytes. Different strategies are available depending on the class of electrochemical energy storage device and the specific chemistries selected. Here, we review existing attempts to build SESDs around carbon fiber (CF) composite electrodes, including the use of both organic and inorganic compounds to increase electrochemical performance. We consider some of the key challenges and discuss the implications for the selection of device chemistries.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 422 ◽  
Author(s):  
Chao Lv ◽  
Cun Hu ◽  
Junhong Luo ◽  
Shuai Liu ◽  
Yan Qiao ◽  
...  

Humidity sensors are a common, but important type of sensors in our daily life and industrial processing. Graphene and graphene-based materials have shown great potential for detecting humidity due to their ultrahigh specific surface areas, extremely high electron mobility at room temperature, and low electrical noise due to the quality of its crystal lattice and its very high electrical conductivity. However, there are still no specific reviews on the progresses of graphene-based humidity sensors. This review focuses on the recent advances in graphene-based humidity sensors, starting from an introduction on the preparation and properties of graphene materials and the sensing mechanisms of seven types of commonly studied graphene-based humidity sensors, and mainly summarizes the recent advances in the preparation and performance of humidity sensors based on pristine graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, and a wide variety of graphene based composite materials, including chemical modification, polymer, metal, metal oxide, and other 2D materials. The remaining challenges along with future trends in high-performance graphene-based humidity sensors are also discussed.


2016 ◽  
Vol 23 (06) ◽  
pp. 1650059 ◽  
Author(s):  
RUIZHUO OUYANG ◽  
WEIWEI LI ◽  
YANG YANG ◽  
WANGYAO ZHANG ◽  
KAI FENG ◽  
...  

We presented here three carbon-nanomaterials-based modified glassy carbon electrodes (GCE) with Ni–Ag nanohybrid nanoparticles (NPs) deposited upon, including single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and the mesoporous carbons (MPCs), and compared their morphology effects on both Ni–Ag deposition quality and electrocatalytic performances toward Glu oxidation. After being deposited with Ni–Ag NPs, a homogenous surface with very small Ni–Ag NPs was obtained for Ni–Ag/SWCNTs/GCE, while heterogeneous, coarse surfaces with obvious embedment with large Ni–Ag particles were observed for both Ni–Ag/MWCNTs/GCE and Ni–Ag/MPC/GCE. All three modified electrodes were well characterized in terms of surface morphology, electron transfer rate, hydrophilicity, interference resistance, stability, electrocatalytic behaviors as well as practicability in real samples, based on which Ni–Ag/SWCNTs/GCE was always proved to be more advantageous over other two composite electrodes. Such advantage of Ni–Ag/SWCNTs/GCE was attributed to its desirable surface morphology good for Ni–Ag deposition and exposure of as many active sites as possible to Glu oxidation, leading to the extraordinary electrocatalytic performance.


2015 ◽  
Vol 15 (1) ◽  
pp. 703-708 ◽  
Author(s):  
M. S. Soumya ◽  
G. Binitha ◽  
P. Praveen ◽  
K. R. V. Subramanian ◽  
Y. S. Lee ◽  
...  

2004 ◽  
Vol 822 ◽  
Author(s):  
Alan F. Jankowski ◽  
Nerine J. Cherepy ◽  
James. L. Ferreira ◽  
Jeffrey P. Hayes

AbstractThe vapor deposition methods of planar magnetron sputtering and electron-beam evaporation are used to synthesize materials with nanostructured morphological features that have ultra-high surface areas with continuous open porosity at the nanoscale. These nanostructured membranes are used in a variety of fuel cells to provide electrode and catalytic functions. Specifically, stand alone and composite nickel electrodes for use in thin film solid-oxide, and molten carbonate fuel cells are formed by sputter deposition and electron beam evaporation, respectively. Also, a potentially high-performance catalyst material for the direct reformation of hydrocarbon fuels at low temperatures is deposited as a nanostructure by the reactive sputtering of a copper-zinc alloy using a partial pressure of oxygen at an elevated substrate temperature.


2019 ◽  
Vol 7 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Jianglin Ye ◽  
Patrice Simon ◽  
Yanwu Zhu

Abstract Tremendous efforts have been dedicated to developing high-performance energy storage devices based on the micro- or nano-manipulation of novel carbon electrodes, as certain nanocarbons are perceived to have advantages such as high specific surface areas, superior electric conductivities, excellent mechanical properties and so on. In typical electrochemical electrodes, ions are intercalated/deintercalated into/from the bulk (for batteries) or adsorbed/desorbed on/from the surface (for electrochemical capacitors). Fast ionic transport, significantly determined by ionic channels in active electrodes or supporting materials, is a prerequisite for the efficient energy storage with carbons. In this report, we summarize recent design strategies for ionic channels in novel carbons and give comments on the promising features based on those carbons towards tailorable ionic channels.


Sign in / Sign up

Export Citation Format

Share Document