Study on the Preparation and Properties of Fiber Reinforced Foamed Cement Material

2013 ◽  
Vol 327 ◽  
pp. 40-43
Author(s):  
Xiao Long Li ◽  
Guo Zhong Li

The ordinary portland cement was used to prepare foamed cement insulation materials by physical foaming method. The influence of different process of fiber added to the foamed cement insulation materials on its performance was studied and the optimum mix ratio of raw materials was determined. The results showed that the glass fire could be evenly dispersed in the slurry by dry adding technology and got better enhanced effect. When the dosage of glass fire was 0.9%, the performance of the foamed cement material as follows: dry density of 318 kg/m3, 3d flexural strength of 0.61MPa, 3d compressive strength of 1.05MPa, thermal conductivity of 0.065W/(m·k). The reinforce mechanism of glass fire was explored.

2021 ◽  
Vol 39 (4A) ◽  
pp. 668-674
Author(s):  
Wasan I. Khalіl ◽  
Qaіs J. Frayyeh ◽  
Haider Abed

In this research, a study is made on the Pervious Geopolymer Concrete (PGC), which is based on localmaterial(Metakaolin). The inclusion of Ordinary Portland Cement (OPC) as a partial substitute for Metakaolin (MK) for the production of (PGCs) has also been investigated. Pervious Geopolymer concrete was outputted from the local Metakaolin (MK), and ordinary Portland cement (OPC) as a partial substitute by weight of MK and silicate of sodium (Na2SiO3) and hydroxide of sodium (NaOH) solution. All PGC samples were cured after 24 hours from casting for five hours at a degree of the temperature of 50 ° C, then the testingafter 28 days. The compressive-strength, total content of voids, the strength of bending, dry-density, and thermal-conductivity of pervious Geopolymer concrete were examined. The mechanicalresults of testing ranged from (11.03 and 2.25) to (14.3 and 2.75) MPa for compressive-strength and flexural strength respectively.


2016 ◽  
Vol 865 ◽  
pp. 67-71 ◽  
Author(s):  
Olesia Mikhailova ◽  
Pavel Rovnaník

Geopolymers are presented in many studies as binders alternative to ordinary Portland cement. Several inorganic materials have been used as raw materials for the production of geopolymers. One of them is metakaolin which is produced by dehydroxylation of kaolin. Metakaolin has a much larger surface area than cement, resulting in an increase in water demand to maintain workability. Polymer admixtures may contribute to reduction of this demand. However, another problem should be considered: plasticizers which improve rheological properties in cement technology are not effective for geopolymers. The aim of this study was to analyze the effect of different polymer admixtures on the compressive and flexural strength, pore size distribution and microstructure of alkali-activated metakaolin material. The results revealed that a maximum compressive strength of 18.6 MPa was achieved by adding 1.5% of VINNAPAS 7016 F, and a maximum flexural strength of 2.2 MPa when adding 0.5 or 1% of the same polymer admixture.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3195-3203
Author(s):  
Jianying Wang

In order to reduce the energy efficiency of the construction industry and improve the building safety, in this research, a new type of inorganic insulation material ? vitreous bead insulation mortar is studied and its properties are analyzed. Quantitative method is used to analyze the influence of glass bead mixing amount, cellulose ether mixing amount and redispersible emulsion powder mixing amount on the consistency, water retention rate, dry density, softening coefficient and compressive strength of glass bead insulation mortar. The effect of different raw materials allocation on the thermal conductivity of vitrified microbeads thermal insulation mortar is explored. The results show that the performance of insulation mortar decreases significantly with the increase of glass bubbles. With the increase of cellulose ether content, the consistency and compressive strength of insulation mortar first increased and then decreased, the water retention rate increased significantly, but the dry density decreased significantly. With the increase of the content of redispersible emulsion powder, the consistency and compressive strength of insulation mortar first increased and then decreased, but the dry density decreased gradually. Glass bubbles and fly ash parameters are the main factors that affect the thermal conductivity of thermal insulation mortar, and their thermal conductivity decreases with the increase of the proportion of air-entraining agent. As a result, the performance of vitreous microbeads thermal insulation mortar will change to a certain extent with the different proportion of raw materials, which provides data support for the preparation and application of inorganic external wall thermal insulation materials.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


2013 ◽  
Vol 662 ◽  
pp. 331-334
Author(s):  
Huan Qi Zhao ◽  
Guo Zhong Li

Cement-based lightweight insulation materials were made. Cement and fly ash are main raw materials. The self-developed composite excitation agent and foaming agent are used. The method of foaming is the physical foaming. The inflection of fiber dosage on the performance of lightweight insulation materials was researched. Its influencing mechanism was discussed. Experiments show that foaming lightweight insulation materials were made with 1.22MPa bending strength, 2.95MPa compressive strength and the 0.072W/mk coefficient of thermal conductivity when the fiber mixing content is 1.2%.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Wang ◽  
Geng Yao ◽  
Xiangnan Zhu ◽  
Junxiang Wang ◽  
Peng Wu ◽  
...  

The disposal of gold ore tailings (GTs) has been a very difficult problem for a long time. Thus, this study explored a new approach to the management of GTs by preparing Portland cement. Physical properties, reaction mechanisms, and hydration product types of cement prepared with GTs (C-GTs) and ordinary Portland cement (C-SS) were compared. X-ray diffraction (XRD), thermogravimetric (TG), and scanning electron microscope energy-dispersive spectroscopy (SEM-EDS) analysis techniques were used to study the mineralogical phases of the clinker and raw materials, hydration product types, and microtopography. The consistency, setting time, flexural strength and compressive strength values of the cement samples (C-GTs and C-SS), and burnability of the raw materials were also studied. The burnability analysis indicated that GTs provided a higher reactivity. The XRD results showed that the clinker phases of the C-GTs were C3S, C2S, C3A, and C4AF. The XRD, TG, and SEM-EDS results showed that the hydration products were flaky calcium hydroxide, rod-shaped ettringite, and granular C-S-H gels. Its compressive strength and flexural strength were, respectively, 30.4 MPa and 6.1 MPa at the curing age of 3 days and 59.1 MPa and 9.8 MPa at the curing age of 28 days, which were slightly higher than those of the C-SS. Furthermore, the results showed that the consistency, initial setting time, and final setting time for the two kinds of cement were similar, which further suggested that GTs could be used to prepare Portland cement.


2018 ◽  
Vol 162 ◽  
pp. 02024
Author(s):  
Waleed Abbas ◽  
Wasan Khalil ◽  
Ibtesam Nasser

Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC) using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA) and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K), respectively.


Activated Slag (AAS) and Fly Ash (FA) based geopolymer concrete a new blended alkali-activated concrete that has been progressively studied over the past years because of its environmental benefits superior engineering properties. Geopolymer has many favorable characteristics in comparison to Ordinary Portland Cement. Many base materials could be utilized to make geopolymer with the convenient concentration of activator solution. In this study, the experimental program composed of two phases; phase on divided into four groups; Group one deliberated the effect of sodium hydroxide molarity and different curing condition on compressive strength. Group two studied the effect of alkali activated solution (NaOH and Na2SiO3) content on compressive strength and workability. The effect of sand replacement with slag on compressive strength and workability was explained in group three. Group four studied the effect of slag replacement with several base materials Fly Ash (FA), Ordinary Portland Cement (OPC), pulverized Red Brick (PRB), and Meta Kaolin (MK). Phase two contains three mixtures from phase one which had the highest compressive strength. For each mixture, the fresh concrete test was air content. In addition the hardened concrete tests were the compressive strength at 3, 7, 28, 90, 180, and 365 days, the flexural strength at 28, 90, and 365 days, and the young's modulus at 28, 90, and 365 days. Moreover; the three mixtures were exposed to elevated temperature at 100oC, 300oC, and 600oC to study the effect of elevated temperature on compressive and flexural strength.


2017 ◽  
Vol 909 ◽  
pp. 280-285
Author(s):  
Trong Phuoc Huynh ◽  
Chao Lung Hwang

The present study aims to investigate the engineering properties of foam lightweight material (FLM) that was produced using a mixture of ordinary Portland cement (OPC) and limestone powder (LP). The FLM samples were prepared with various proportions of LP (10%, 20%, and 30%) and different percentages of foam (9%, 12%, and 15%). Properties of the FLM were evaluated through the values of compressive strength, dry density, porosity, and thermal conductivity. Test results show that the foam contents affected all properties of the FLM significantly, whereas LP contents showed the insignificant effect to the FLM properties. Furthermore, the results of the present study showed a close correlation between porosity and other properties of the FLM as higher porosity resulted in lower density and thus lower thermal conductivity and mechanical strength.


Sign in / Sign up

Export Citation Format

Share Document