Experimental Investigation on Surface Integrity of End Milling Nickel Based Alloy-Inconel 718

2012 ◽  
Vol 500 ◽  
pp. 51-57 ◽  
Author(s):  
Xiao Jiang Cai ◽  
Sheng Qin ◽  
Qing Long An ◽  
Ming Chen

nconel 718 is a typical difficult-to-machine material, and its high speed end milling process has wide applications in manufacturing parts for aerospace and power industry. Surface integrity of these parts greatly influences the final characteristics. This paper presents an experimental investigation to evaluate surface integrity behaviors of Inconel 718 with finishing cutting parameters in terms of surface topography, surface roughness Ra, residual stresses and subsurface microstructure and microhardness. The results show that high cutting speed is advisable to get better surface topography and roughness. Residual stresses and subsurface microhardness barely increase after 80m/min. Microstructure in surface layer has only slight deformation after high speed milling.

2011 ◽  
Vol 264-265 ◽  
pp. 1193-1198
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


2011 ◽  
Vol 264-265 ◽  
pp. 888-893
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


2013 ◽  
Vol 634-638 ◽  
pp. 2831-2834
Author(s):  
Xiao Li Zhu ◽  
Jin Fa Zhang ◽  
Wu Jun Chen ◽  
Ji Wen Deng

Surface quality including residual stresses and surface roughness due to turning operations in Inconel 718 were studied as a function of cutting speed, feed rate and depth of cut. By means of X-ray radiation diffraction method, the influence of cutting parameters on residual stress was investigated. The results show that dry cutting of Inconel 718 resulted in predominantly tensile residual stresses at the machined surface and the surface roughness increased with the increase of cutting parameters.The effects of the cutting parameters on surface integrity are investigated while employing the range analysis. From these results it was possible to select a combination of cutting speed, feed rate and depth of cut that generate favorable surface characteristics.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


Author(s):  
Mohan Kumar ◽  
Vivek Bajpai

Miniaturization with superior quality product of super alloy is the demand of the industry. Ti6Al4V is the demanding super alloy due to its excellent material properties, although this super alloy is known for poor machinability in terms of burr formation, low tool life, and poor surface finish. Therefore, being a popular super alloy, it comes under the difficult-to-cut material. In the current work, burr formation on the machining of Ti6Al4V has been studied. Experimental investigation and characterizations of top burr formation on Ti6Al4V alloy using end milling process were carried out. A scanning electron microscopy identifies the burr formed on the machined surface. A new technique has been introduced to measure the top burr width (i.e. equivalent width) accurately. Equivalent burr width calculated as the ratio of total area of burr generated to the total height. It was observed that equivalent burr width in up milling was increased by 120%, while in down milling, it was decreased by 50% as the speed varies from conventional to high speed. Furthermore, the effects of different cutting parameters and tool parameters on top burr formation have been analyzed to establish correlation among them.


2013 ◽  
Vol 820 ◽  
pp. 134-137
Author(s):  
Wen Cheng Pan ◽  
Bramha Kondaiah ◽  
Song Lin Ding ◽  
John Mo

Titanium is a difficult-to-machine material due to its low heat conductivity and high chemical reactivity. It creates high tool wear and causes low machining efficiency. The strong relationship cutting forces between and tool wear and surface integrity of work piece makes it necessary to study the effect of dynamic cutting force on cutting tools to analyse the wear propagation and tool life. This paper investigates the tool wear on Polycrystalline Diamond (PCD) cutters in milling Ti-6Al-4V and analyses workpiece surface quality. Based on the experimental results of slot milling, cutting parameters that yields best surface finish were found.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


2010 ◽  
Vol 126-128 ◽  
pp. 911-916 ◽  
Author(s):  
Yuan Wei Wang ◽  
Song Zhang ◽  
Jian Feng Li ◽  
Tong Chao Ding

In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide inserts. The signal-to-noise (S/N) ratio are employed to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on surface roughness, and the optimal combination of the cutting parameters for the desired surface roughness is obtained. An exponential regression model for the surface roughness is formulated based on the experimental results. Finally, the verification tests show that surface roughness generated by the optimal cutting parameters is really the minimum value, and there is a good agreement between the predictive results and experimental measurements.


2020 ◽  
Vol 44 (3) ◽  
pp. 395-404
Author(s):  
Morvarid Memarianpour ◽  
Seyed Ali Niknam ◽  
Sylvain Turenne ◽  
Marek Balazinski

Three distinctive regions of tool wear, known as initial wear, steady-state wear, and accelerated wear, are well understood. However, the effects of cutting parameters on the initial tool wear mechanism, morphology, and size have received less attention as compared to the other two regions. Knowing that adequate control of initial tool wear may lead to extended tool life, in particular in hard-to-cut metals such as superalloys, this topic has become a source of attention. Amongst superalloys, Inconel 718 is considered as one of the most difficult to cut materials, which has a wide range of industrial applications. This study intends to evaluate the effects of cutting parameters on initial tool wear, as well as tool wear progression, when turning Inconel 718. Therefore, microstructural evaluation of the initial tool wear mode under various cutting conditions, as well as tool wear measurements, were conducted. It was observed that certain elements of the workpieces were migrated to the insert flank face. This is evidence of adhesion at the initial moments of the cutting process. In contrast to many other easy-to-cut materials, the steady-state wear period when turning Inconel 718 is significantly short under a higher level of cutting speed and feed rate.


Sign in / Sign up

Export Citation Format

Share Document