Study on Compaction Characteristics of Solidified Mud with Different Proportion of Curing Agent

2012 ◽  
Vol 535-537 ◽  
pp. 1807-1810 ◽  
Author(s):  
Chao Hui Wang ◽  
Juan Juan Zhao ◽  
Xiao Hua Wang ◽  
Xin Qi Wang ◽  
Sheng Guan Di

The compacting curves of mud solidified by some curing agents, including cements, HSC301, CVC and CDK, were studied by heavy compaction tests. Based on this, prediction formulas for optimum water content and maximum dry density of solidified mud were regressed. Experimental results showed that the optimum water content of mud was increased and the maximum dry density reduced with the increasing amount of curing agent. Regression formulas were offered as a basis for the selection of mud curing agents.

2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


2017 ◽  
Vol 3 (11) ◽  
pp. 1008 ◽  
Author(s):  
Yuyu Zhang ◽  
Wanjun Ye ◽  
Zuoren Wang

This paper presents a study to investigate the effects of water content, lime content and compaction energy on the compaction characteristics of lime-treated loess highway embankments. Laboratory compaction tests were conducted to determine the maximum dry density  and optimum water content  of loess with different lime Contents (0, 3, 5 and 8%), and to examine the effects of water content, lime content and compaction energy on the value of  and . In situ compaction tests were performed to obtain the in situ dry density  and the degree of compaction  of different lime-treated loess. Experimental embankments with different fill materials (0, 3, 5 and 8% lime treated loess) were compacted by different rollers during in situ tests. The results indicate that  increases due to the increase of water content . Once water content exceeds , dry density  decreases dramatically. The addition of lime induced the increase of  and the decrease of . A higher compaction energy results in a higher value of  and a lower value of . The value of  achieves it’s maximum value when in situ water content  was larger than the value of  (+1-2%). The degree of compaction  can hardly be achieved to 100% in the field construction of embankments. Higher water content and compaction energy is needed for optimum compaction.


2020 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
Amit Kumar ◽  
Kiran Devi ◽  
Maninder Singh ◽  
Dharmender Kumar Soni

The evolution of industries is essential for the economic growth of any country; however, this growth often comes with exploitation of natural resources and generation of wastes. The safe disposal and utilisation of industrial wastes has become essential for sustainable development. A possible approach would be to utilize these wastes in construction industries. The stone industry is one such flawed industries that generates waste in dust or slurry form; this leads harmful impacts on human beings, animals, and surrounding areas which, in turn, can lead to soil infertility. In the present study, stone waste was examined for its influence on maximum dry density (MDD), optimum water content (OMC) and unconfined compressive strength (UCS) of soil experimentally. Stone waste was used at 0%, 4%, 8%, 12%, 16% and 20% by weight of soil and UCS tests were conducted at maturing periods of 7, 14 and 21 days. Test results reported that the incorporation of stone waste improved the compressive strength value significantly. Maximum dry density was enhanced; however, optimum water content was reduced with the use of stone waste in soil due to its fine particles. Linear regression equations were also derived for various properties.


2020 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
Amit Kumar ◽  
Kiran Devi ◽  
Maninder Singh ◽  
Dharmender Kumar Soni

The evolution of industries is essential for the economic growth of any country; however, this growth often comes with exploitation of natural resources and generation of wastes. The safe disposal and utilisation of industrial wastes has become essential for sustainable development. A possible approach would be to utilize these wastes in construction industries. The stone industry is one such flawed industries that generates waste in dust or slurry form; this leads harmful impacts on human beings, animals, and surrounding areas which, in turn, can lead to soil infertility. In the present study, stone waste was examined for its influence on maximum dry density (MDD), optimum water content (OMC) and unconfined compressive strength (UCS) of soil experimentally. Stone waste was used at 0%, 4%, 8%, 12%, 16% and 20% by weight of soil and UCS tests were conducted at maturing periods of 7, 14 and 21 days. Test results reported that the incorporation of stone waste improved the compressive strength value significantly. Maximum dry density was enhanced; however, optimum water content was reduced with the use of stone waste in soil due to its fine particles. Linear regression equations were also derived for various properties.


1978 ◽  
Vol 15 (3) ◽  
pp. 391-401 ◽  
Author(s):  
P. J. Rivard ◽  
T. E. Goodwin

The geotechnical characteristics of compacted soils used by the Prairie Farm Rehabilitation Administration in earth embankments were correlated with easily obtained soil properties.Relationships were established between Standard Proctor maximum density and optimum water content versus liquid limit for clay soils. In addition, a relationship was established to determine the Standard Proctor maximum dry density and optimum water content using the results from the one-point Proctor test for clay, and sand and silt soils.Effective shear strength parameters and consolidation characteristics of compacted samples were related to liquid limit, water content, and dry density. The results of field and laboratory measurements of pore pressure were used to relate the pore pressure coefficients U/σ3 and U/σ1 to the deviation of water content from optimum water content and applied stress. A relationship was established between embankment compression and embankment height using field measurements of embankment settlement.The data suggest that similar geotechnical characteristics will be obtained for laboratory and field compacted alluvial and glacial soils when they are placed with Standard Proctor compactive effort at similar water contents, densities, and liquid limit. In this paper 'alluvial clay' is used to describe clays deposited in lacustrine or fluvial environments and 'glacial clay' is used to describe clays deposited by a glacier.


2018 ◽  
Vol 55 (2) ◽  
pp. 182-190 ◽  
Author(s):  
T.W. Zhang ◽  
Y.J. Cui ◽  
F. Lamas-Lopez ◽  
N. Calon ◽  
S. Costa D’Aguiar

To better understand the overall hydromechanical behaviour of interlayer soil, the compaction behaviour of one of the two components — the portion of fines (<4 mm) that is sensitive to water content changes — was investigated. The standard Proctor compaction curves were first determined for the soils. Then, the maximum shear modulus, Gmax, and suction were measured on samples statically compacted at an identical dry density, but different remoulding water contents. The changes in Gmax reveal the existence of a characteristic water content corresponding to the maximum Gmax. The results also show that this characteristic water content increases with the soil plasticity, being similar to the variation trend of optimum water content with soil plasticity. A bimodal pattern was observed from the plot of total suction ψ versus the slope of water content w–log(ψ) curve. The suction corresponding to the maximum Gmax is close to the lowest point between the two peaks in the ψ–dw/dlog(ψ) curve. A reasonable explanation was attempted for the correspondence between the “optimum water content” defined by the maximum value of Gmax and the corresponding suction. The difference between the static and dynamic compactions was also explained in terms of suction values.


2012 ◽  
Vol 238 ◽  
pp. 441-446
Author(s):  
Jing Yang ◽  
Ling Hao Wang ◽  
Fu Li Ma ◽  
Xiao Hong Bai

The degree of compaction is usually used as the compaction quality and control indicator of backfill in practical project. However, as the degree of compaction is affected by various internal and external factors, its accuracy is difficult to guarantee. In this paper, compacted loess samples were prepared under different compaction energies by normal compaction method. The curves of compression coefficient and dry density, the compression coefficient and porosity of compaction loess samples under different compaction energy are analyzed while the water content is constant. The air porosities of compaction loess samples under different compaction energy and water content are calculated and summed up. The air porosity of compaction loess samples under different compaction energy is more stable than the degree of compaction when the water content is exactly equal to the optimum water content. The rationality of using air porosity as the loess compaction quality control indicator is discussed. It is proposed using air porosity as additional indicator of compaction quality control on the condition of the loess compacted dry density meeting the requirements. The air porosity less than 6.5% is suggested as the additional quality control indictor for region backfill compaction.


2020 ◽  
Vol 38 (6A) ◽  
pp. 801-812
Author(s):  
Mohammed A. Al-Neami ◽  
Falah H. Rahil ◽  
Yaseen H. Al-Ani

For any land-based structure, the foundation is very important and has to be strong to support the entire structure. In order for the foundation to be strong, the soil underneath it plays a very critical role. Some projects where the soil compacted by modifying energy is insufficient to achieve the required results, so the additives as a kind of installation and reinforcement are used to achieve the required improvement. This study introduces an attempt to improve cohesive soil by using Polypropylene Fiber instead of conventional kinds used in soil stabilization. Three different percentages (0.25%, 0.5%, and 0.75% by dry weight of soil) and lengths (6, 12, and 18) mm of fiber are mixed with cohesive as a trial to enhance some properties of clay. The results of soil samples prepared at a dry density at three different water conditions (optimum water content, dry side, and wet side) showed that the increase of the percentage and length of polypropylene fiber causes a reduction in the maximum dry density of soils. Soil cohesion increases with the increase of PPF up to 0.5% then decreased. The length of Polypropylene fiber has a great effect on the cohesion of soil and adding 0.5% Polypropylene fibers with a length of 18mm to the soils consider the optimum mix for design purposes to improve the soil. Finally, the soil reinforced by PPF exhibits a reduction in the values of the compression ratio (CR) and accelerates the consolidation of the soil.


2013 ◽  
Vol 405-408 ◽  
pp. 548-553
Author(s):  
Xin Zhong Wang ◽  
Rui Liu ◽  
Shu Jun Peng

The compaction characteristics of the lime-treated expansive soils from the planning airport in China's Ankang were studied through the heavy compaction tests. The results show that all these elements such as lime content, water content, soil height, wetting time have a certain effect on dry density. As the lime quality ratio increases, the optimum water content under heavy compacting standard of improved soils increases but the maximum dry density decreases. With the increase of lime content, the effect of water content on dry density decreases while the water content near to its optimum value. Soils with the lower height have higher dry density when compaction energy, lime content and water content unchanged. As the wetting time increases, the maximum dry density shows a decreasing tendency until after 48 h it remained stable. It indicates that with the same lime content the order of primary factors influence on dry density are water content, wetting time, soil height. Finally, the lime stabilizing principle to expansive soil is explained through by applying scanning electron microscope technique.


Sign in / Sign up

Export Citation Format

Share Document