Effect of Ultrasonic Vibration on the Friction and Wear Properties of GCr15/45# Steel Frictional Pairs Lubricated by n-Al2O3 Additives

2012 ◽  
Vol 538-541 ◽  
pp. 1920-1923
Author(s):  
Yu Lin Qiao ◽  
Shan Lin Yang ◽  
Yan Zang ◽  
Xin Yu Dong ◽  
Qing Sheng Cui

The friction and wear properties of GCr15/45# steel frictional pairs lubricated by n- Al2O3 additives under ultrasonic vibration or not were studied. The scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer (EDS) were carried out to analyse the wear scar surface. The effect mechanism of ultrasonic vibration on friction pairs was discussed. The results indicated that ultrasonic vibration could decrease the friction and wear of GCr15/45# friction pairs, when the content of n-Al2O3 was 0.5wt%, the effect of ultrasonic vibration on friction pairs was most obvious. The friction coefficient, wear volume and wear scar depth under ultrasonic vibration decreased 10%, 34% and 13%, respectively. The friction reduction and anti-wear mechanism of n-Al2O3 was single “micro ball bearing” without ultrasonic vibration, and it changed to “micro ball bearing” and adsorption penetration film with ultrasonic vibration, so the friction coefficient and wear volume was reduced.

2011 ◽  
Vol 295-297 ◽  
pp. 2102-2105 ◽  
Author(s):  
Yu Lin Qiao ◽  
Shan Lin Yang ◽  
Yan Zang ◽  
Dong Wang

Ultrasonic vibration friction and wear experiments were carried out by MFT-R4000 reciprocating friction and wear tester bonded with ultrasonic device. The surface morphologies of wear scars were examined by scanning electron microscope (SEM). The influences of ultrasonic vibration on friction reduction and anti-wear properties of GCr15/45# steel frictional pairs under different loads were discussed. The experimental results showed that, the friction of GCr15/45# steel frictional pairs could be reduced by ultrasonic vibration, and the reduction of friction coefficient became more obvious as the loads increasing. The friction coefficient measured under ultrasonic vibration is 12% lower than it measured without ultrasonic vibration when the load was 50N. However, the wear of frictional pairs increased under ultrasonic vibration, and the amplitude of wear volume enlarged with the loads increase, which is 63% at the load of 50N.


2013 ◽  
Vol 652-654 ◽  
pp. 1881-1885
Author(s):  
Xin Yu Dong ◽  
Yu Lin Qiao ◽  
Yan Zang ◽  
Qing Sheng Cui

The effects of friction load and ultrasonic vibration on friction reduction and anti-wear properties of Al2O3/Al2O3 ceramic frictional pairs under oil lubrication were investigated by a modified MFT-R4000 reciprocating friction and wear tester. The mechanism of friction reduction and anti-wear under ultrasonic vibration was discussed. The results showed that, the ultrasonic vibration could influence the friction reduction and anti-wear properties of Al2O3/Al2O3 ceramic friction pairs due to it could reduce the stress between the friction pairs and destroy the oil film on the surface of samples. When the friction frequency was 2Hz, the ultrasonic vibration could reduce the friction coefficient within experiment load range. When the loads were 70N, 80N, 90N and 100N, the average friction coefficient were reduced by 16.1%, 14.5%, 9.7% and 2.6%,and wear volume of frictional pairs decreased 35%、32%、31% and 12%.


2011 ◽  
Vol 338 ◽  
pp. 599-602 ◽  
Author(s):  
Yu Lin Qiao ◽  
Shan Lin Yang ◽  
Yan Zang ◽  
Xin Yu Dong

The effects of friction speed and ultrasonic vibration on friction reduction and anti-wear properties of GCr15/45# steel frictional pairs under oil lubrication were investigated by a modified MFT-R4000 reciprocating friction and wear tester. The mechanism of friction reduction and anti-wear under ultrasonic vibration was discussed. The results showed that, the ultrasonic vibration could influence the friction reduction and anti-wear properties of frictional pairs due to it could reduce the stress between the friction pairs and destroy the oil film on the surface of samples. When the friction frequency was 2Hz,ultrasonic vibration would reduce the friction coefficient and wear volume of the frictional pairs. When the load was 40N, the friction coefficient and wear volume of the frictional pairs attained under ultrasonic vibration decreased 8% and 44% respectively. However, ultrasonic vibration would increase the friction coefficient and wear volume when the friction frequency was 5Hz. When the load was 30N, friction coefficient and wear volume of frictional pairs increased 11% and 74% than that without ultrasonic vibration respectively.


2016 ◽  
Vol 693 ◽  
pp. 718-725 ◽  
Author(s):  
H.F. Wang ◽  
J.L. Wang ◽  
W.W. Song ◽  
Dun Wen Zuo ◽  
D.L. Shao ◽  
...  

The friction and wear properties of the friction stir jointing 7022 aluminum alloy joining region were tested in this paper. The friction coefficients and wearing capacities of the joining regions under different joining process parameters were obtained. The experiment results showed that the friction coefficients and wearing capacities of the joining regions had a certain relationship with the hardness, but not became direct ratio relation. The friction coefficient of the joining region was smaller than that of the base metal. This main reason was base metal was lath-shaped grain, and the joining region was isometric crystal. The wear volume under 400/30 parameters was minimum. The wear volume was greatly influenced by the hardness of the joining region, but was not direct proportion relationship. Due to the random factors influence in friction process, the law of the friction coefficient reflecting friction and wear was not the same with the law of wear volume reflecting friction and wear. The friction form was abrasive wear and adhesive wear.


2017 ◽  
Vol 733 ◽  
pp. 60-64
Author(s):  
Munir Tasdemir ◽  
Ozkan Gulsoy

In the present work, the friction and wear properties of Polypropylene (PP) based composites filled with Hydroxyapatite (HA) particles were studied. Fillers contents in the PP were 10, 20, and 30 wt%. The effects of hydroxyapatite ratio on the water absorption, friction and wear properties of the polymer composites is presented. The result showed that the addition of HA to the composite changed the water absorption, friction coefficient and wear rate.


2011 ◽  
Vol 311-313 ◽  
pp. 1177-1181 ◽  
Author(s):  
Xing Dong Yuan ◽  
Bin Xu ◽  
Xiao Jie Yang ◽  
Hai Long Ma

The friction and wear properties of Polytetrafluoroethylene (PTFE) coatings before and after gamma irradiation were studied under vacuum conditions. Experimental results indicated that the friction and wear properties of PTFE coatings were improved by gamma irradiation. Results showed that the wear process of PTFE coatings before and after gamma irradiation consists of three stages. The steps for the irradiated PTFE are slightly longer than that for the non-irradiated samples. The friction coefficient of irradiated PTFE coatings reduces slightly compared to that of the non-irradiated samples. The friction coefficients of the PTFE coatings before and after gamma irradiation first increase with the increase of sliding velocity and then decrease with the increase of sliding velocity, and The friction coefficient of PTFE coatings before and after gamma irradiation decreases with the increase of load. The wear of irradiated PTFE coatings is slightly lower than that of non-irradiated PTFE coatings. The wear of PTFE coatings before and after gamma irradiation first decreases with the increase of sliding speed and then increases as the sliding speed increases. The wear of PTFE coatings first decreases with the increase of load and then increases with the increase of load. Scanning electron microscope (SEM) was utilized to investigate the worn surfaces.


2011 ◽  
Vol 175 ◽  
pp. 136-139 ◽  
Author(s):  
Bing Suo Pan ◽  
Xiao Hong Fang ◽  
Ming Yuan Niu

To reduce the friction coefficient between impregnated diamond bit and rock, experiments on addition of graphite to the matrix material of bit cutters were conducted. The cutters were made up of diamond contained working layers and binding layers. The friction and wear properties of cutters and binding layers were investigated using a pin-on-disc friction & wear tester with granite as tribopair. The results showed that with addition of graphite, the hardness and friction coefficient of binding layer decreased, but its wear resistance increased; compared to cutters without graphite, those cutters containing graphite had lower wear loss and friction coefficient and their sliding wear process was much steadier, but diamond protrusion was still normal.


2018 ◽  
Vol 913 ◽  
pp. 205-211
Author(s):  
Dong Mei Liu ◽  
Qiang Song Wang ◽  
Wei Yuan ◽  
Xu Jun Mi

A comparative study on the friction and wear properties of three kinds of copper alloys, including Cu-Ni based, Cu-Al and Cu-Be alloys was carried out in this study. The friction pair was stainless steel, and both dry and MoS2 lubrication friction experiments were investigated. During the experiments, different loads were chosen for different alloys. It was found that under dry friction condition, the friction coefficients of both Cu-Ni based and Cu-Al alloys did not change as the loads changes, whereas the friction coefficient of Cu-Be alloy increased as the loads increases. Under lubrication friction condition, the friction coefficients of all three alloys did not change as the load changes. The results show that the dry friction coefficient of Cu-Ni based alloy was the largest (0.74), the Cu-Al alloy next (0.60), and the Cu-Be alloy had the smallest dry friction coefficient (0.54). The lubrication friction coefficient of Cu-Ni based and Cu-Be was equal and relatively smaller (0.12), whereas the Cu-Al alloy had a relative larger lubrication friction coefficient (0.27). The microstructure observations were consistent with the friction and wear performance, and the SEM results show that different wear mechanisms were dominated for different alloys.


Author(s):  
F. Vos ◽  
L. Delaey ◽  
M. De Bonte ◽  
L. Froyen

Abstract An alternative production route to obtain thermally sprayed self-lubricating ceramic coatings is proposed and microstructural, friction and wear properties of these coatings are discussed. A preliminary powder treatment shows to induce a higher degree of homogeneity compared to conventionally deposited composite coatings, offering some perspectives for a further improvement of the lubricating and wear properties. This approach is illustrated using CaF2 as a solid lubricant dispersed in a Cr2O3 matrix, where the high melting point of the latter (Tm{Cr2O3} =2460°C) necessitates plasma spraying as deposition technique. The microstructure of the coatings is evaluated by a metallographic study of sections perpendicular and parallel to the substrate surface. Wear and friction behaviour is evaluated using reciprocating wear test Wear tracks are analysed by means of laser profilometry. The results are discussed in relation to test and production parameters. Test temperature as well as solid lubricant concentration predominantly affects the wear and friction properties. Using a surface temperature of 400°C a friction coefficient of 0.25 and a wear volume of 37*103 µm3 after 10.000 cycles are obtained for a coating containing 16 vol.% of CaF2.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4547
Author(s):  
Bin Yang ◽  
Aiqin Wang ◽  
Kunding Liu ◽  
Chenlu Liu ◽  
Jingpei Xie ◽  
...  

SiCp/Al-Si composites with different CeO2 contents were prepared by a powder metallurgy method. The effect of CeO2 content on mechanical properties, friction and wear properties of the composites was studied. The results show that with the increase in CeO2 content from 0 to 1.8 wt%, the density, hardness, friction coefficient of the composites first increases and then decreases, the coefficient of thermal expansion (CTE) and wear rate of the composites first decreases and then increases. When the content of CeO2 was 0.6 wt%, the density and hardness of the composite reached the maximum value of 98.54% and 113.7 HBW, respectively, the CTE of the composite reached the minimum value of 11.1 × 10−6 K−1, the friction coefficient and wear rate of the composite reached the maximum value of 0.32 and the minimum value of 1.02 mg/m, respectively. CeO2 has little effect on the wear mechanism of composites, and the wear mechanism of composites with different CeO2 content is mainly abrasive wear under the load of 550 N. Compared with the content of CeO2, load has a great influence on the wear properties of the composites. The wear mechanism of the composites is mainly oxidation wear and abrasive wear under low load. With the increase in load, the wear degree of abrasive particles is aggravated, and adhesive wear occurs under higher load.


Sign in / Sign up

Export Citation Format

Share Document