Review of Stratified Charge Research in Oxygen-Enriched and Nitrogen-Enriched Combustion

2012 ◽  
Vol 538-541 ◽  
pp. 2457-2460
Author(s):  
De Yuan Su ◽  
Ying Ai Jin ◽  
Qing Gao ◽  
Xian Da Che ◽  
Yun Long Xing

This paper discusses combustion and emissions of internal combustion engine when oxygen-enriched combustion air and nitrogen-enriched combustion air are used. Nitrogen-enriched combustion can reduce the formation of NOx by inhibiting the combustion temperature in cylinder. Engine combustion is mainly subject to components of oxygen and nitrogen in the intake, the former combustion and the latter flame retardant. So we can control the two components during combustion process to re-engineering their component in the intake to the implementation control the combustion and emissions.

2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 395
Author(s):  
Jeongwoo Song ◽  
Han Ho Song

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.


2011 ◽  
Vol 144 (1) ◽  
pp. 37-48
Author(s):  
Karol CUPIAŁ ◽  
Wojciech TUTAK ◽  
Arkadiusz JAMROZIK ◽  
Arkadiusz KOCISZEWSKI

The results of numerical analysis the combustion process in turbocharged CI engine 6CT107 are presented in the paper. Engine was installed on the ANDORIA’s power generator of 100 kVA/80 kW. The results of modelling the combustion process for different angle setting fuel injection, compared with the results obtained by indicating the real engine. Numerical analysis was performed in two programs, designed for three-dimensional modelling of the thermal cycle the piston internal combustion engine, namely AVL FIRE and the KIVA-3V.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating ◽  
Andrew A. Pouring

Abstract Numerical simulation of flow, combustion phenomena and pollutants emission characteristics have been obtained on an homogeneous-charged internal combustion engine having conventional flat piston and five other bowl-in-piston geometries. The code employed here uses the time marching procedure and solves the governing partial differential equations of multi-component chemically reactive flow by finite difference method. The transient solution is marched out in a sequence of time steps. The results show that the piston geometry affects the local flame properties which subsequently influences the pollutants emission level. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Ashwani K. Gupta ◽  
Lu Jiang ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion phenomena and pollutants emission characteristics have been obtained on an internal combustion engine having conventional flat piston and advanced piston geometries. The code employed the time marching procedure that solves the governing partial differential equations of multi-component chemically reactive fluid flow by finite difference method. The transient solution is marched out in a sequence of time steps. The results show that both the piston geometry and inlet flow conditions affects the local flame properties which subsequently alters the pollutants emission levels. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for energy conservation and environmental pollution control.


2014 ◽  
Vol 644-650 ◽  
pp. 394-397
Author(s):  
Yan Shi ◽  
Yong Feng Liu ◽  
Xiao She Jia

In order to simulate the combustion system work process for an internal combustion engine accurately,the paper simulates the combustion process which based on the modified 4JB1 engine and used the KIVA-3V software. Variables such as cylinder pressure, cylinder temperature, NOX and SOOT emission are predicted and analyzed by using single injection strategy.It was found that the production of NOX begins from the moderate burning period, reaches a peak quickly and keep constant. The production of SOOT is mainly in the late of fast burning period to the moderate burning period and most of the SOOT is oxidized.


2016 ◽  
Vol 18 (8) ◽  
pp. 797-809 ◽  
Author(s):  
Mateos Kassa ◽  
Carrie Hall ◽  
Andrew Ickes ◽  
Thomas Wallner

In internal combustion engines, cycle-to-cycle and cylinder-to-cylinder variations of the combustion process have been shown to negatively impact the fuel efficiency of the engine and lead to higher exhaust emissions. The combustion variations are generally tied to differences in the composition and condition of the trapped mass throughout each cycle and across individual cylinders. Thus, advanced engines featuring exhaust gas recirculation, flexible valve actuation systems, advanced fueling strategies, and turbocharging systems are prone to exhibit higher variations in the combustion process. In this study, the cylinder-to-cylinder variations of the combustion process in a dual-fuel internal combustion engine leveraging late intake valve closing are investigated and a model to predict and address one of the root causes for these variations across cylinders is developed. The study is conducted on an inline six-cylinder heavy-duty dual-fuel engine equipped with exhaust gas recirculation, a variable geometry turbocharger, and a fully flexible variable intake valve actuation system. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. The cylinder-to-cylinder variations observed in the study have been associated with the maldistribution of the port-injected fuel, which is exacerbated at late intake valve timings. The resulting difference in indicated mean effective pressure between the cylinders ranges from 9% at an intake valve closing of 570° after top dead center to 38% at an intake valve closing of 620° after top dead center and indicates an increasingly uneven fuel distribution. The study leverages both experimental and simulation studies to investigate the distribution of the port-injected fuel and its impact on cylinder-to-cylinder variation. The effects of intake valve closing as well as the impact of intake runner length on fuel distribution were quantitatively analyzed, and a model was developed that can be used to accurately predict the fuel distribution of the port-injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow. A model-based control strategy is implemented to adjust the fueling at each port and shown to significantly reduce the cylinder-to-cylinder variations in fuel distribution.


Sign in / Sign up

Export Citation Format

Share Document