Modification of Cellulase to Different Bleached Softwood Pulp

2012 ◽  
Vol 550-553 ◽  
pp. 1186-1189
Author(s):  
Min Du ◽  
Xin Ping Li ◽  
Jin Wang ◽  
Peng Zhou Wang

Cellulase named as Novozym 476 was used to modify three kinds of bleached softwood pulps respectively. By analyzing the changes of refining degree, water retention value, specific surface area, wetting properties of fiber before and after enzymatic treatment, studied the influence of characteristics of raw material to the effect of enzymatic modification. The results indicate that in the same conditions, the refining property, water retention value, specific surface area and wetting property of the three pulps all increase. Among these three pulps, the pulp of Kamloops Kraft has the best modification effect. Refining degree of Kamloops Kraft pulp increases 36.0 °SR when refining for 10,000 PFI revolutions, and the water retention value increases by 68.0%, the dye loading increases with 0.1 mg/g, the contact angle decreases by 4.5%. It illustrates that the fiber raw material with a thin cell wall would have a better effect of enzymatic modification and the wrapping way of microfibers would influence the effect of enzymatic modification.

2012 ◽  
Vol 482-484 ◽  
pp. 1894-1897 ◽  
Author(s):  
Lin Liu ◽  
Guang Li

PFI mill was used to prepare PBO fibrils from PBO fiber. With the help of the observation of SEM and the measure of water retention value as well as the analysis of specific surface area, it was found that the milling parameters, including the beating rotation number, beating spacing, beating pressure and beating concentration, influenced the fibrillation of PBO fiber. The processing parameters were studied. The optimal milling conditions were obtained: beating rotation number of 40000-50000r, spacing of 2.4mm, pressure of 4.89N/mm, and concentration of 7.5%. The prepared PBO fibrillar fiber has high specific surface area of 5.001m2/g, while the original PBO fiber has only a specific surface area of 0.476m2/g.


2014 ◽  
Vol 1015 ◽  
pp. 501-504 ◽  
Author(s):  
Yong Guang Bi ◽  
Xu Si Xu

Papers with Ca (NO3)2• 4H2O and (NH4)2HPO4as raw material, prepared by ionic liquids assisted nanoHAP, resulting hexagonal nanoHAP are crystal grain size are 10-20nm level, are smaller nanometer range ; specific surface area, the findings show that ionic liquids have the technology to promote the significance of the preparation method can provide a reference for large-scale preparation of biomedical nanomaterials.


2011 ◽  
Vol 197-198 ◽  
pp. 17-20
Author(s):  
Jun Ming Li ◽  
Ai Juan Wang ◽  
Yu Peng Lv ◽  
Bai Ling Jiang

Effect of crystals size, surface area, pore size and porosity of hydroxyapatite microspheres on the loading ability of bovine serum albumin was studied in this paper. The surface morphology, specific surface area and porosity of hydroxyapatite microspheres were characterized by scanning electron microscope, specific surface area and pore size analyzer, respectively. The concentration of BSA in aqueous solutions both before and after adsorption was determined by ultraviolet-visible spectrophotometer. The results indicated that the adsorption behavior of bovine serum albumin appeared to obey the Langmuir-type isotherm model. Fast adsorption appeared at the beginning, and then decreased gradually. Hydroxyapatite microspheres calcined at 600°C had the maximum capacity, and those calcined at 800°C showed lower adsorption ability. The loading ability of hydroxyapatite microspheres depended on its crystal size, specific surface area, pore size and porosity, etc.


2008 ◽  
Vol 8 (12) ◽  
pp. 6445-6450
Author(s):  
F. Paraguay-Delgado ◽  
Y. Verde ◽  
E. Cizniega ◽  
J. A. Lumbreras ◽  
G. Alonso-Nuñez

The present study reports the synthesis method, microstructure characterization, and thermal stability of nanostructured porous mixed oxide (MoO3-WO3) at 550 and 900 °C of annealing. The material was synthesized using a hydrothermal method. The precursor was prepared by aqueous solution using ammonium heptamolibdate and ammonium metatungstate, with an atomic ratio of Mo/W = 1. The pH was adjusted to 5, and then the solution was transferred to a teflon-lined stainless steel autoclave and heated at 200 °C for 48 h. The resultant material was washed using deionized water. The specific surface area, morphology, composition, and microstructure before and after annealing were studied by N2 physisorption, scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and X-Ray diffraction (XRD). The initial synthesized materials showed low crystallinity and high specific surface area around (141 m2/g). After thermal annealing the material showed higher crystallinity and diminished its specific surface area drastically.


2011 ◽  
Vol 695 ◽  
pp. 553-556
Author(s):  
Yu Hong Tian ◽  
Xin Zhe Lan ◽  
Qiu Li Zhang ◽  
Juan Qin Xue ◽  
Yong Hui Song ◽  
...  

The low-cost blue coke industrial by-product, blue coke powder was used as raw material for the production of porous carbons adsorbent by steam activating at temperature of 800°C under the atmosphere of N2 for 60 minutes. The specific surface area and pore properties of the adsorbent were characterized by using N2 adsorption-desorption isotherms. Furthermore, the adsorption effects of the adsorbent for ammonia nitrogen in coking wastewater were investigated in terms of particle size, dosage of absorbent and adsorption time. The results show that the specific surface area is 620.94m2/g, the total pore volume is 0.4442cm3/g and the average mesopore size is 4.5808nm, the adsorbent possesses predominant mesoporous structures. In aeration, the removal rate of ammonia nitrogen can reach to 39.5% under the conditions of the ammonia nitrogen concentration of 625mg/L, the dosage of adsorbent 10g/L at the adsorption time of 60 minutes.


2021 ◽  
Author(s):  
Sedigheh Aghayari

Abstract Here away used to reduce the porosity of the nanofibers, which is removing PVA nanofibers from PVA/PA6 nanofibers by water treatment. Measuring the porosity of the electrospun web before and after treatment by the BET method proved this. The specific surface area of the web was 60 % reduced after water treatment. Surface roughness and pore volume have reduced after water treatment. Also, I introduced BET as the method for measuring the diameters of mesopores (or lower than 100nm). I used BET to prove that the cracks can make mesopores on the nanofibers.


2021 ◽  
Vol 887 ◽  
pp. 603-609
Author(s):  
A.S. Kondratenko ◽  
S.L. Buyantuev ◽  
S.Yu. Shishulkin

This paper dwells upon finding the specific surface area of cake, a coal enrichment waste, exposed to electroplasma treatment; the goal is to make an organomineral porous material to be used as a sorbent for wastewater treatment. The research team used a monomolecular Langmuir adsorption model and surface tension of the surfactants before and after adsorption at the interface of solution and solid adsorbent. Another process considered herein was thermal activation of substances in the electroplasmic reactor for making organomineral porous materials from coal cakes. The paper presents the resulting specific surfaces area of the organomineral sorbent thus produced. Thus, the waste of flotation, i.e. coal cake, is fundamentally suitable for making porous substances by thermal destruction in an electroplasma reactor.


2015 ◽  
Vol 1090 ◽  
pp. 154-159
Author(s):  
Sheng Zhou Zhang ◽  
Hong Ying Xia ◽  
Li Bo Zhang ◽  
Jin Hui Peng ◽  
Jian Wu ◽  
...  

Bamboo as the raw material is carbonized to prepare high specific surface area activated carbon by microwave heating under nitrogen atmosphere in our present work. Influences of activation agents on the preparation of activated carbon are studied. The results show that activation agents have a significant influence on the preparation of activated carbon. Under the heating time of 15 min, the adsorption capacity of the activated carbon prepared utilizing KOH as activation agent is the best. When the KOH/C ratio is 4, the iodine number and yield of activated carbon are 2298 mg/g and 39.82%, respectively. The BET specific surface area, total pore volume and average pore diameter of activated carbon are 3441 m2/g, 2.093 ml/g and 2.434 nm, respectively. The micropore volume of 1.304 ml/g is 62.30% of total pore volume, indicating that the activated carbon is microporous activated carbon.


Sign in / Sign up

Export Citation Format

Share Document