Preparation of Adsorbent from Blue Coke Powder and its Application in Coking Wastewater

2011 ◽  
Vol 695 ◽  
pp. 553-556
Author(s):  
Yu Hong Tian ◽  
Xin Zhe Lan ◽  
Qiu Li Zhang ◽  
Juan Qin Xue ◽  
Yong Hui Song ◽  
...  

The low-cost blue coke industrial by-product, blue coke powder was used as raw material for the production of porous carbons adsorbent by steam activating at temperature of 800°C under the atmosphere of N2 for 60 minutes. The specific surface area and pore properties of the adsorbent were characterized by using N2 adsorption-desorption isotherms. Furthermore, the adsorption effects of the adsorbent for ammonia nitrogen in coking wastewater were investigated in terms of particle size, dosage of absorbent and adsorption time. The results show that the specific surface area is 620.94m2/g, the total pore volume is 0.4442cm3/g and the average mesopore size is 4.5808nm, the adsorbent possesses predominant mesoporous structures. In aeration, the removal rate of ammonia nitrogen can reach to 39.5% under the conditions of the ammonia nitrogen concentration of 625mg/L, the dosage of adsorbent 10g/L at the adsorption time of 60 minutes.

2007 ◽  
Vol 56 (3) ◽  
pp. 75-84 ◽  
Author(s):  
G. Langergraber ◽  
C. Prandtstetten ◽  
A. Pressl ◽  
R. Rohrhofer ◽  
R. Haberl

Using subsurface vertical flow constructed wetlands (SSVFCWs) with intermittent loading it is possible to fulfil the stringent Austrian effluent standards regarding nitrification. For small plants (less than 500 persons) standards for ammonia nitrogen concentration have to be met at water temperatures higher than 12 °C, effluent concentrations and treatment efficiencies for organic matter have to be met the whole year around. According to the Austrian design standards the required surface area for SSVFCWs treating wastewater was 5 m2 per person. Within the first part of an Austrian research project the goal was to optimise, i.e. minimise the surface area requirement of vertical flow beds. Therefore, three SSVFCWs with a surface area of 20 m2 each have been operated in parallel. The organic loads applied were 20, 27 and 40 g COD/m2/d, which corresponds to a specific surface area requirement of 4, 3 and 2 m2 per PE, respectively. The paper compares the effluent concentrations and elimination efficiencies of the three parallel operated beds. It could be shown that a specific area demand of 4 m2 per person is suitable to be included in the revision of the Austrian design standard. Additionally it could be shown that during the warmer seasons (May–October) when the temperature of the effluent is higher than 12 °C the specific surface area might be further reduced; even 2 m2 per person has been proven to be adequate.


2020 ◽  
Vol 10 (8) ◽  
pp. 2694 ◽  
Author(s):  
Wenxin Ji ◽  
Shiyue Zhang ◽  
Pengde Zhao ◽  
Shasha Zhang ◽  
Ning Feng ◽  
...  

In view of the current and urgent environmental protection needs, the use of industrial solid waste in China’s Ningdong is becoming more and more important. In this paper, NaP zeolite with good physical properties is synthesized by using coal gasification coarse slag (CGCS) as the raw material, without the addition of a silicon and aluminum source, without the addition of a template agent, and without high-temperature calcination. Add a small amount of NaOH and deionized water to the CGCS to adjust the molar ratio to SiO2:Al2O3:Na2O:H2O = 5.2:1.0:5.0:100. The effects of aging time, crystallization temperature, and crystallization time parameters on synthetic zeolite were studied. The raw materials and the obtained zeolite were tested by XRF, XRD, SEM, FT-IR, TG-DSC, BET, and other technologies. The results show that the specific surface area of the synthesized NaP zeolite can reach 161.06 m2/g, which has the characteristics of large specific surface area, regular morphology, and high crystallinity. We obtained NaP zeolite through a simple and low-cost synthesis method. The synthesized NaP zeolite was used to simulate the removal of ammonia nitrogen in wastewater, and the optimal removal rate was 92.67%. Among them, Na+ plays an important role in the synthesis of NaP zeolite and ion exchange with NH4+. Our research provides new ideas for solving the large-scale accumulation of CGCS and treating ammonia nitrogen in industrial wastewater. Thus, it is a promising green environmental protection and “treating waste by waste” route.


2019 ◽  
Vol 80 (4) ◽  
pp. 737-746
Author(s):  
Rishi Gurjar ◽  
Akshay D. Shende ◽  
Girish R. Pophali

Abstract Studies on laboratory-scale submerged aerobic fixed film reactor (SAFF) packed with synthetic media having specific surface area of 165 m2/m3 with a void volume of 89% were carried out to assess its performance under various organic loading rates (OLR) and hydraulic retention times (HRT). Synthetic wastewater having chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of 400 ± 10% and 210 ± 10% mg/L respectively was fed and the reactor was subjected to OLRs ranging from 0.37 to 1.26 kg COD/m3.d. It was observed that steady sloughing of biofilm occurs within the SAFF reactor all the times and average concentration of sloughed biomass in the effluent was 26 mg/L. The COD and BOD removal efficiencies varied between 85 and 89% and 86 to 94%, respectively. The kinetic studies demonstrated that SAFF reactor followed Stover–Kincannon and Grau models, with high correlation coefficients (R2) of 0.9977 and 0.9916, respectively. Thus, the values of kinetic coefficients such as maximum substrate utilization rate, Umax = 64.1 g/(L.d); saturation value constant, KB = 72.31 g/(L.d) and Grau second-order substrate removal rate constant, Ks = 2.44 day−1 can be useful to develop and design large scale SAFF reactors. Finally, the study reveals that the optimum range for OLR can vary within 0.68–0.94 kg COD/m3.d.


2014 ◽  
Vol 1015 ◽  
pp. 501-504 ◽  
Author(s):  
Yong Guang Bi ◽  
Xu Si Xu

Papers with Ca (NO3)2• 4H2O and (NH4)2HPO4as raw material, prepared by ionic liquids assisted nanoHAP, resulting hexagonal nanoHAP are crystal grain size are 10-20nm level, are smaller nanometer range ; specific surface area, the findings show that ionic liquids have the technology to promote the significance of the preparation method can provide a reference for large-scale preparation of biomedical nanomaterials.


2020 ◽  
Vol 26 (5) ◽  
pp. 200394-0
Author(s):  
Jie Zhang ◽  
Ben Dong ◽  
Ding Ding ◽  
Shilong He ◽  
Sijie Ge

In this paper, MnO<sub>2</sub> catalyst were firstly prepared and modified by four kinds of anionic precursors (i.e., NO<sub>3</sub><sup>-</sup>, AC<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and Cl<sup>-</sup>) through redox precipitation method. After that, bio-treated coking wastewater (BTCW) was prepared and employed as targeted pollutants to investigate the catalytic ozonation performance of prepared-MnO<sub>2</sub> catalyst was investigated and characterized by the removal efficiencies and mechanism of the prepared bio-treated coking wastewater (BTCW), which was employed as the targeted pollutants. Specifically, the effects of specific surface area, crystal structure, valence state of Mn element and lattice oxygen content on catalytic activity of MnO<sub>2</sub> materials were characterized by BET, XRD and XPS, respectively. Results showed that COD of BTCW could be removed 47.39% under MnO<sub>2</sub>-NO<sub>3</sub><sup>-</sup> catalyst with 2 h reaction time, which was much higher than that of MnO<sub>2</sub>-AC<sup>-</sup> (3.94%), MnO<sub>2</sub>-SO<sub>4</sub><sup>2-</sup> (12.42%), MnO<sub>2</sub>-Cl<sup>-</sup> (12.94%) and pure O<sub>3</sub> without catalyst (21.51%), respectively. So, MnO<sub>2</sub>-NO<sub>3</sub><sup>-</sup> presented the highest catalytic performance among these catalysts. The reason may be attributed to a series of better physiochemical properties including the smaller average grain, the larger specific surface area and active groups, more crystal defect and oxygen vacancy, higher relative content of Mn<sup>3+</sup> and adsorbed oxygen (O<sub>ads</sub>) than that of another three catalysts.


2015 ◽  
Vol 1090 ◽  
pp. 154-159
Author(s):  
Sheng Zhou Zhang ◽  
Hong Ying Xia ◽  
Li Bo Zhang ◽  
Jin Hui Peng ◽  
Jian Wu ◽  
...  

Bamboo as the raw material is carbonized to prepare high specific surface area activated carbon by microwave heating under nitrogen atmosphere in our present work. Influences of activation agents on the preparation of activated carbon are studied. The results show that activation agents have a significant influence on the preparation of activated carbon. Under the heating time of 15 min, the adsorption capacity of the activated carbon prepared utilizing KOH as activation agent is the best. When the KOH/C ratio is 4, the iodine number and yield of activated carbon are 2298 mg/g and 39.82%, respectively. The BET specific surface area, total pore volume and average pore diameter of activated carbon are 3441 m2/g, 2.093 ml/g and 2.434 nm, respectively. The micropore volume of 1.304 ml/g is 62.30% of total pore volume, indicating that the activated carbon is microporous activated carbon.


2021 ◽  
Author(s):  
Yong Ai ◽  
Na Yin ◽  
Yanquan Ouyang ◽  
Yuanxin Xu ◽  
Pengfei Yang

Abstract In order to make full use of waste as raw materials to prepare low-cost zeolite, develop green chemical industry and achieve the purpose of treating waste with waste. High-purity zeolite X was prepared by the alkaline fusion hydrothermal method (AFH) using waste basalt powder as raw material, and was used as an adsorbent to investigate the adsorption performance for uranium-containing wastewater. The structure, morphology, specific surface area, chemical composition, chemical bonds, characteristic functional groups and chemical states of surface elements of the samples were characterized by XRD, SEM, BET, EDS, FT-IR and XPS. zeolite X with high crystallinity and rich hydroxyl/carboxyl groups was successfully synthesized by the AFH method, and its specific surface area was as high as 623.4 m2·g-1. When the adsorption time (t) is 720 min, the adsorption temperature (T) is 30 ℃, the initial uranium (VI) concentration is (C0) 35 mg/L, pH is 6.0, and the adsorbent dosage (m) is 5/35 mg/mL, the equilibriu adsorption capacity of zeolite X for uranyl ions is 228.4 mg·g-1. Thermodynamic results show that the adsorption process of uranyl ions by zeolite X is spontaneous and exothermic. Freundlich isotherms and quasi-second-order models are suitable to describe the adsorption process of uranyl ions by zeolite X. XPS analysis results show that -OH and -COOH play an important role in the adsorption process. At the same time, there is ion exchange between UO22+ and zeolite during the adsorption process.


2020 ◽  
pp. 83-92
Author(s):  
Aleksandr Petrovich Voznyakovskii ◽  
Anatoliy Petrovich Karmanov ◽  
Anna Yur'yevna Neverovskaya ◽  
Aleksey Aleksandrovich Voznyakovskii ◽  
Lyudmila Sergeyevna Kocheva ◽  
...  

The possibility of the carbonization of the Sosnowskyi's hogweed (Heracléum sosnówskyi) biomass for obtaining the carbonic nanmaterials was studied. The characteristic of component composition is given and the parameters of the superficially-porous structure of plant biomass are established. The isotherms of adsorption and desorption of nitrogen on the surface are studied and it is shown that they relate to the type II according to the IUPAC classification. The distribution of times according to the sizes is investigated and it is established that the basic portion of the pore space of the vegetable raw material forms the mezopors with an average width 3.5 of nm. The specific surface area according to Brunauer-Emmet-Teller is determined, which composed 16.4 m2/g. Using a method of the carbonization of organic materials under the effect of local extremely high temperatures and oxidizers the synthesis of nanocarbonic powders, which are formed under the conditions of the self-propagating high-temperature synthesis (SHS method), was carried out. By the methods of spectral analysis (Raman spectroscopy, X-ray diffractometry) and electron microscopy it is shown that from their morphometric parameters the particles of the obtained carbonized product correspond to 2D nanocarbon in the form of grafenic nanoplates. The low-defect planar surface and the presence of the oxygen-containing terminal groups are the characteristic properties of new product. The specific surface area, which composed 179.1 m2/g, is determined. The specific surface area, which composed 179.1 m2/g, is determined. It is established that the micropores introduce the basic contribution to the specific surface area of nanomaterial on the basis of the Sosnowskyi's hogweed biomass.


RSC Advances ◽  
2021 ◽  
Vol 11 (53) ◽  
pp. 33208-33218
Author(s):  
Zhaojin Li ◽  
Qian Liu ◽  
Lizhi Sun ◽  
Ning Li ◽  
Xiaofeng Wang ◽  
...  

3D porous carbon with ultra-high specific surface area and excellent electrochemical performance is synthesized by a simple activation and carbonization process through adopting biomass yam waste as raw material.


Sign in / Sign up

Export Citation Format

Share Document