Synthesis and Evaluation of a Novel Retarded Acid Additive

2012 ◽  
Vol 554-556 ◽  
pp. 95-104
Author(s):  
Hong Ping Quan ◽  
Hong Sheng Lu ◽  
Tai Liang Zhang ◽  
Shan Shan Dai

A novel acidizing additive is developed to improve acidizing effectiveness, especially to solve the problems during acidizing process, like rapid acid-rock reaction rate etc. The monomer was synthetized by Mannich reaction. Experimental results indicate that the optimum conditions are: mass ratio 18.5:8:14 of formaldehyde to amine A and phosphorus B, reaction temperature 90°C, reaction time 14h, polymerization inhibitor hydroquinone dosage 0.25%, under which the degree of conversion amounts to 91%. Infrared spectrum shows the feasibility of synthesis scheme. Then the monomer copolymerized with AMPS under the conditions: mass ratio 24.2:4 of monomer to AMPS, reaction temperature 80°C, reaction time 1h, monomer concentration 40%, and initiator dosage 2.0%. The corrosion and secondary precipitate performance of the retarded acid system was investigated. The results indicate that this operating fluid has superior retarding effectiveness and excellent secondary precipitate behavior. By core displacement experiment, the excellent retarding property of the retarded acid was further confirmed.

2009 ◽  
Vol 6 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Xiu-Yan Pang ◽  
Ting-Ting You

Biodiesel was obtained through transesterification of animal oil and ethanol under the catalysis of SO42-/ TiO2We have inspected the activation of SO42-/ TiO2prepared under different dipping vitriol concentration,baking activation temperature. The optimum conditions to prepare SO42-/ TiO2are; dipping vitriol concentration of TiCl4 hydrolysis product is 1.5 mol / L, baking activation temperature for this catalyst takes 500°C. It can guarantee the catalyst has a smaller size and a higher load of vitriol. With animal oil as raw materials, ethanol as transesterifying agent and SO42-/ TiO2as catalyst, the influence of reaction time, mass ratio of ethanol to oil and the dosage of catalyst were investigated. Optimum condition to obtain biodiesel was studied through orthogonal experiment, and it is listed as follow: mass ratio of ethanol to oil is 1.5:1.0, dosage of catalyst is 30 g SO42-/ TiO2versusper 100 g animal oil, and reaction time is 8.0 h when reaction temperature is controlled as 80°C. The yield of biodiesel is 0.796 g/g under the above condition. SO42-/ TiO2can be used as an effective catalyst during transesterification of animal oil and ethanol, and it can be reused


2014 ◽  
Vol 692 ◽  
pp. 326-331
Author(s):  
Fang Peng ◽  
Hui Zhao ◽  
Shui Jin Yang

A new environmental friendly catalyst, H4SiW6Mo6O40/TiO2-SiO2 was prepared by impregnation method, the synthesis of cyclohexanone 1,2-propanediol ketal was the probe reaction to optimize the synthetic condition of catalyst. The reactive condition of catalyst was optimized by orthogonal test method. The optimum conditions are n (TiO2): n (SiO2)= 3: 1, 20 % mass ratio of m (H4SiW6Mo6O40): m (TiO2-SiO2), the calcined time is 3 h and 300 °C of activated temperature. Using H4SiW6Mo6O40/TiO2-SiO2 as catalyst, adipic acid was synthesized from the oxidation of cyclohexanone by 30 % H2O2. Influences of dosage of H4SiW6Mo6O40/TiO2-SiO2, reaction temperature, volume of hydrogen peroxide and reaction time were discussed. Experimental results showed that H4SiW6Mo6O40/TiO2-SiO2 is a good catalyst for synthesis of adipic acid. When n (cyclohexene): n (H2O2): n (H4SiW6Mo6O40/TiO2-SiO2)= 100: 979: 0.04, reaction temperature is 130 °C and reaction time is 5 h, under the optimum conditions, the yield of adipic acid is 45.9 %.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


2020 ◽  
Vol 7 (4) ◽  
pp. 192132 ◽  
Author(s):  
Quancheng Yang ◽  
Fan Zhang ◽  
Xingjian Deng ◽  
Hongchen Guo ◽  
Chao Zhang ◽  
...  

Vast quantities of gangue from coal mining and processing have accumulated over the years and caused significant economic and environmental problems in China. For high added-value utilization of alumina rich coal gangue (ARCG), a mild hydro-chemical process was investigated to extract alumina. The influences of NaOH concentration, mass ratio of alkali to gangue, reaction temperature and reaction time were systematically studied. An alumina extraction rate of 94.68% was achieved at the condition of NaOH concentration 47.5%, alkali to gangue ratio of 6, reaction temperature of 260°C and reaction time of 120 min. The obtained leaching residues were characterized through X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometer. Research confirmed that kaolinite the main alumina-bearing phase of ARCG can be decomposed and transformed to Na 8 Al 6 Si 6 O 24 (OH) 2 (H 2 O) 2 and Ca 2 Al 2 SiO 6 (OH) 2 at relatively low temperature and short reaction time. Additionally, Na 8 Al 6 Si 6 O 24 (OH) 2 (H 2 O) 2 and Ca 2 Al 2 SiO 6 (OH) 2 are unstable and will transform to alumina-free phase NaCaHSiO 4 under the optimal conditions, which is the major reason for high alumina extraction rates.


2011 ◽  
Vol 183-185 ◽  
pp. 1110-1113
Author(s):  
Yuan Bo Huang ◽  
Yun Wu Zheng ◽  
Hao Feng ◽  
Zhi Feng Zheng ◽  
Ying Zi Jiang

The liquefaction of corncob in polyhydric alcohols was investigated by using sulfuric acid as a catalyst. Results showed that the best liquefaction could be obtained with residue percent of 4.5% under the conditions with the corncob/polyhydric alcohols mass ratio of 1/5, reaction temperature of 150°C, reaction time of 60 min, catalyst amount of 3% (based on the weight of corncob), PEG 400/glycerin mass ratio of 7/3 in the polyhydric alcohols, respectively. The liquefied liquid products had acid number of 18.9 mg KOH/g and hydroxyl number of 616.3mg KOH/g, respectively.


2011 ◽  
Vol 197-198 ◽  
pp. 899-905 ◽  
Author(s):  
Chun Xiang Lin ◽  
Ming Hua Liu ◽  
Huai Yu Zhan

The spherical cellulose adsorbent was prepared by grafting acrylic acid onto the spherical cellulose beads prepared by NMMO method. The effecting factors, e.g., monomer concentration, initiator concentration, reaction temperature and reaction time were optimized by the orthogonal and signal-factor experiments and the structure of the adsorbent was characterized by FTIR and SEM. The graft mechanism was also discussed. Moreover, the spherical cellulose adsorbents were shown to behave as good sorbents for basic amino acids L-Arg, L-Lys and L-His.


2011 ◽  
Vol 393-395 ◽  
pp. 1413-1416
Author(s):  
Yu Xiang Wang ◽  
Dan Dan Li ◽  
Xing Huang ◽  
Ya Juan Zhao

The selective hydrogenation of 4,4'-methylenedianiline(MDA) over Ru/γ-Al2O3 was investigated in the presence of diamine and base. Under the optimum conditions: the reaction temperature of 448K, H2 pressure of 1100 psig , and reaction time of 5h, the conversion of 4,4'-methylenedianiline was close to 100% and the selectivity to trans-trans isomer of 4,4'-diamino-dicyclohexy was less than 20%.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
H. M. Huang ◽  
X. M. Xiao ◽  
L. P. Yang ◽  
B. Yan

In this study, magnesite was used as a low-cost magnesium source to remove ammonium as struvite from the wastewater generated in the rare-earth elements separation process. Since the solubility of magnesite is low, before it was used it was decomposed to magnesia which has a higher reaction rate than magnesite. To optimize its usage, the optimum temperature of decomposition of magnesite and the time required for the process were determined by batch experiments to be 700 °C and 1.5 h, respectively. Besides, batch experiments using the residues of magnesite decomposed under optimum conditions were undertaken to investigate the effects of solid (magnesite)/liquid (wastewater) ratio and reaction time on ammonium removal as struvite. Results indicated that for the solid/liquid ratios tested and for a reaction time of 6 h, phosphorus concentrations fell steeply from the initial 9105 mg/L to a range of 198.8–29.8 mg/L, and ammonium concentrations from the initial 5287 mg/L to 540–520 mg/L. An economic analysis conducted indicated that the operation cost of the struvite process could be reduced by about 34% using decomposed magnesite instead of pure MgCl2.


2020 ◽  
Vol 143 ◽  
pp. 02006
Author(s):  
Jiaxin Liu ◽  
Siqi Wang ◽  
Xiuqing Ding ◽  
Jingyi Fu ◽  
Jun Zhao

To decrease the amount of Zn2+ in industrial waste water, in this study, β-cyclodextrin (β-CD) was first modified and then used to obtain a β-cyclodextrin polymer (β-CDP). The effects of reaction temperature and reaction time of β-CD with citric acid (CA), polyethylene glycol 400 (PEG-400), and disodium hydrogen phosphate (NaH2PO4) on the amount of β-CDP produced were investigated. The results showed that at a reaction temperature of 145 °C and a reaction time of 4.5 h, 6.58 g of β-CDP was produced. Then, chitosan (CTS) was crosslinked with β-CDP using glutaraldehyde to prepare a chitosan/β-cyclodextrin (CTS/β-CDP) complex. The mass ratio of CTS to β-CDP, reaction temperature, reaction time, and amount of added glutaraldehyde were used as the main variables to examine the Zn2+ adsorption rate and adsorption capacity of the composites prepared in this study. The optimum experimental conditions were as follows: a mass ratio of 3:10, a reaction temperature of 80 °C, a reaction time of 90 min, and 2 mL of glutaraldehyde. Under these optimal conditions, the adsorption amount and adsorption rates of Zn2+ using CTS/β-CDP complex were respectively 97.70 mg·g-1 and 78.92%.


2012 ◽  
Vol 624 ◽  
pp. 252-255 ◽  
Author(s):  
Xiao Zhao ◽  
Qi Song ◽  
Hai Lin ◽  
Yan Ling Wang ◽  
Zeng Bao Wang ◽  
...  

A retarded zirconium cross-linking agent ECA-1 was prepared by using zirconium oxychloride, lactic acid, xylitol, and so on, then we got a high-temperature delayed cross-linking acid with cross-linking agent ECA-1 added to EVA-180 gelling acid, cross-linked acid performance and its influencing factors were discussed in details, such as reaction conditions of crosslinker, concentrations of crosslinker and thickener, and so on. The results showed that the obtained cross-linked acid had good temperature-tolerate and shear-tolerate properties when the mass ratio of zirconium oxychloride, lactic acid and xylitol is 1:1.25:0.0208 , the reaction temperature is 50~55°C, the reaction time is 4 hours, the delayed cross-linking time of acid system can be adjusted by changing the dosage of crosslinker and thickener.


Sign in / Sign up

Export Citation Format

Share Document