Diamond Grit Size Prediction in Surface Grinding Silicon Carbide

2012 ◽  
Vol 576 ◽  
pp. 539-542
Author(s):  
Mohamed Konneh

High hardness, chemical stability, attractive high temperature wear resistance, low density and strength at elevated temperature are the advantages of ceramics over other materials. These properties have made a number of components made of hard and brittle materials, typically represented by advanced ceramics gained applications in industrial sectors over the past two decades. Nevertheless the benefits due to the salient features of ceramic materials go along with some difficulties with machining in general because of their high values of hardness and very low fracture toughness as compared to other metallic materials and alloys. This paper presents an experiemntal study on identifying the diamond grit size and grinding condition that produced low surface roughness value, Ra and less micro-fractures on ground silicon carbide work-piece material.

2012 ◽  
Vol 174-177 ◽  
pp. 215-218
Author(s):  
Peng Wang

There are two groups of ceramics, traditional and modern ones. Brick, cement tile, and glass are traditional ceramics. They are inorganic non-metallic materials with high melting points, high strength, good strength, and excellent oxidation resistance. Construction industry mainly depends on them. However, traditional ceramics are brittle, low strength, low resistance. Compared with traditional ones, modern ceramics are magnitude finer, more homogeneous, and less porous. They include alumina, silicon nitride, silicon carbide, and boron carbide. They can be applied to building materials, components, and aerospace. Therefore, modern ceramics have stronger adaptability to modern society. Ceramic engineers need in-depth research on design and application modern ceramics.


Author(s):  
Asif Rashid ◽  
Muhammad P. Jahan ◽  
Asma Perveen ◽  
Jianfeng Ma

Abstract Ceramic materials possess excellent properties like high hardness, superior corrosion resistance and great resistance to wear. These materials are low in density and demonstrate high strength to wear ratio. There is an increasing need to machine these hard and brittle materials as they have various engineering applications. The distinguishing properties of ceramics do not allow them to be machined by conventional processes. Electrical discharge machining (EDM) is a non-conventional process and a viable option to machine and generate complex shapes in hard materials. EDM can be used on materials irrespective of its hardness and wear resistance as it is a non-contact machining process and no active force is applied between the workpiece and electrode during machining. As EDM requires the workpiece to be electrically conductive, machining ceramics by this process is a challenge. Alterations need to be carried out in order for insulating ceramics to be machined by this process. This paper discusses the basics of EDM process and its control parameters. A classification of ceramic materials based on their electrical conductivity is established and their relevance to the respective material removal mechanisms have been identified. Different approaches to successfully machine ceramics by EDM have been reviewed. The challenges and modifications of each method have been discussed. An outline and expectations for machining a particular ceramic material and its composites have been generated. Finally, the prospects of future research in this area have been identified.


2019 ◽  
pp. 116-122
Author(s):  
V. V. Stepanov ◽  
A. D. Kashtanov ◽  
S. U. Shchutsky ◽  
A. N. Agrinsky ◽  
N. I. Simonov

We consider the results of studies on the choice of material of the lower radial bearing of the pump, designed to circulate the coolant lead – bismuth. The circulation of the liquid coolant is provided by a vertical axial pump having a “long” shaft. In this design it is necessary to provide for the lower bearing the lubrication carried out with lead – bismuth coolant. Having analyzed the operating conditions of the axial pump, we decided to carry out the lower bearing in accordance with the scheme of a hydrodynamic sliding bearing. The materials of friction pairs in such a bearing must withstand the stresses arising from the operation of the pump, as well as the aggressive conditions of the coolant. Non-metallic materials – ceramics and carbon-based composite materials – were selected basing on the study of literature data for experimental research on the corrosion and heat resistance in the lead-bismuth environment. 


2021 ◽  
Vol 11 (4) ◽  
pp. 1783
Author(s):  
Ming-Yi Tsai ◽  
Kun-Ying Li ◽  
Sun-Yu Ji

In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical mechanical planarization (CMP) polishing time. Two different grinding plates with pads impregnated with mixed abrasives were prepared: one with self-modified diamond + SiC and a ceramic binder and one with self-modified diamond + SiO2 + Al2O3 + SiC and a ceramic binder. The surface properties and removal rate of the SiC substrate were investigated and a comparison with the traditional method was conducted. The experimental results showed that the material removal rate (MRR) was higher for the SiC substrate with the mixed abrasive lapping plate than for the traditional method. The grinding wear rate could be reduced by 31.6%. The surface roughness of the samples polished using the diamond-impregnated lapping plate was markedly better than that of the samples polished using the copper plate. However, while the surface finish was better and the grinding efficiency was high, the wear rate of the mixed abrasive-impregnated polishing plates was high. This was a clear indication that this novel method was effective and could be used for SiC grinding and lapping.


2013 ◽  
Vol 753-755 ◽  
pp. 277-280 ◽  
Author(s):  
Wei Xiang Liu

Nano-ceramic materials had high hardness and wear resistance. Combined with current technology and cost saving, nanostructured coatings technology were carried out, using HVOF ( high velocity oxygen fuel) or plasma spraying technique can obtain high quality ceramic coating on metal substrate. Ceramic coatings produced cracks in the grinding due to grinding surface residual stress. the coatings grinding surface residual stress of engineering ceramics have been researched, grinding surface residual stress in the nanostructured ceramic coatings are being researched. the researches in this field include grinding process modeling, abrasives and grinding parameters, grinding process monitoring and control and realization of the software, the grinding mechanism and grinding damage on the surface, grinding force prediction, on-line detection, grinding on nanocoating material is a multivariable complex process.


Author(s):  
L. Rapoport ◽  
N. Fleischer ◽  
R. Tenne

Fullerene-like WS2 (MoS2) nanoparticles (IF) have been studied in the past [1–3] Their efficacy as additives for lubrication fluids has been demonstrated. [4–5] Recently, IF-WS2 nanoparticles were confined inside a porous and densified bronze-graphite matrix, prepared by powder metallurgy (PM) technique. Substantial reduction in both friction and wear, and an increase in the critical load were observed [6]. New applications of IF nanopartcles as development of polymer nanocomposites, burnishing and friction of ceramic materials under severe contact conditions are presented in this work.


VUZF Review ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 233-238
Author(s):  
Iwona Dudzik ◽  
Irena Brukwicka

This article deals with immigrants in Polish economy. The aim of the article is to present the most important research findings, concerning immigrants and enterprises where they are employed. This issue also includes the influence of the COVID-19 pandemic. The authors of this paper focused mostly on Ukrainian immigrants. It has been proven that increase in the number of immigrant workers leads to the growth of the Gross Domestic Product, and contributes to the faster growth in remittances from the Republic of Poland to Ukraine. As a result of the adverse impact of the COVID-19 pandemic on sales, non-employment costs were reduced in the service and industrial sectors. Employment changes were not correlated with company’s situation.  It is worth noting, that because of the COVID-19 pandemic, some companies may be less inclined to recruit immigrants in the near future, and the overall demand for labor may decrease. This is particularly important, because the primary reason for employment people from abroad was the inability to meet labor needs of the citizens of Poland. The majority of immigrants are employed only to perform physical work which does not require qualifications. Large companies show greater interest in the foreign human capital. Over the past five years, there has been an increase in the number of immigrants who declared their intention to stay in Poland for a longer period of time. More than half of the immigrants stay in Poland, with at least, one family member. On this basis, it may be concluded that the number of immigrants willing to settle in Poland is growing.


2020 ◽  
pp. 135
Author(s):  
Vitor Manuel Fernandes Pereira ◽  
Tiago Pinheiro Ramos

<p>Accidentalmente descubierto en 1951, durante la construcción de la carretera de enlace entre la ciudad histórica y la estación de ferrocarril, el yacimiento arqueológico de Mileu se convirtió rápidamente en uno de los yacimientos arqueológicos más emblemáticos de la Beira Interior. En este artículo, tenemos la intención de presentar<br />los resultados de la investigación que hemos desarrollado en el sitio en los últimos 15 años, destacando el análisis del material cerámico como elemento de datación de las diferentes fases de ocupación de Mileu. Su análisis confirma una secuencia ocupacional desde la primera mitad del siglo I A.D hasta los siglos XII / XIII. Los materiales romanos analizados son principalmente de importación, permitiendo no solo una datación de contextos, sino también comprender su origen, el contexto de su uso o cuestiones relacionadas con las rutas comerciales dentro del Imperio Romano y el cruce del territorio de la Beira Interior. En cuanto a los materiales medievales, de producción local, muestran la continuación de la ocupación del yacimiento en épocas pos-romana</p><p>Accidentally discovered in 1951, during the construction of the link road between the historic city and the railroad station, the archaeological site of Mileu quickly became one of the most emblematic archaeological sites of Beira Interior. In this article we plan to present the results of research that we have developed on the site over the past<br />15 years, highlighting the analysis of the ceramic material while dating element of the different occupation phases of Mileu. Their analysis confirms an occupational sequence from the first half of the century A.D. to the XII / XIII centuries. The analyzed Roman materials are primarily imported, allowing not only a dating of contexts, but also how to understand their origin, the context of its use, or issues related to the trade routes within the Roman Empire and crossing the territory of Beira Interior. As for the medieval materials, local production, show the continuation of the occupation site in post-Roman times</p>


1988 ◽  
Vol 2 (1) ◽  
pp. 33-43 ◽  
Author(s):  
K. Asgar

This article deals mainly with the development of dental casting techniques and formulation of the different groups of alloys used in the fabrication of ceramo-metal restorations. It is recognized that in order for the quality of dental cast restorations to be improved, having alloys with the proper composition is not enough. Biocompatibility, good mechanical and physical properties, longevity of the restoration, compatibility with porcelain, and a simple manipulative technique are as important. Researchers have contributed to different aspects of dental castings and have made cast restorations what they are today. Unfortunately, much of the original basic research has been overlooked by present investigators, who have duplicated studies conducted in the past without realizing that the study had already been performed and the research had been published. The main reason for this is that abstracts of articles published prior to 1975 are not available through a library computer-search system. To obtain copies of articles published prior to 1975, one has to search the literature to know where they were published. This article provides references for much of the past work in this area. Also, dental libraries do not carry copies of U.S. patents. This places the majority of researchers located at dental schools at a disadvantage. They are not familiar with what the patents claim, what is taught, and why certain elements are added or eliminated from alloys and investment materials. This article also provides the numbers of many U.S. patents. By having the patent number, one can obtain the text of the patent from the U.S. Patent Office in Washington, DC. Since esthetics plays an important role in today's society, emphasis will be given only to alloys designed for fabrication of ceramo-metal restorations. Many ceramo-metal alloys are available today, and they are classified differently by different individuals. In this article, classification will be based on the major components of these alloys, as well as on a chronological introduction of one group leading to the development of the next group. Based on this, one can classify these alloys into six major groups. Chemical composition, properties, and the developers of these alloys, along with their U.S. patents, are given. Recently, two types of all-ceramic restorations have been introduced. The main advantage of the all-ceramic restoration is its superior esthetic quality compared with that of ceramo-metal restorations. Their main disadvantages are low strength and ductility. Their strength, however, is sufficient for single-unit restorations, but not for bridgework. The use of titanium for dental restorations has also been studied, and it has been found to be suitable. Future Studies - Future work should be devoted to the following: (1) the development of stronger and more ductile ceramic materials: (2) further study of the promising palladium alloys from the noble metal group and titanium alloys from the base metal group; (3) the development of easier and less-time-consuming techniques for the fabrication of dental appliances; (4) the development of a powder technique rather than a cast technique for future fabrication methods; and (5) the development of new laboratory equipment, e.g., a single sintering oven capable of sintering both ceramic and metallic particles, which would be accepted if the powder technique is developed.


2021 ◽  
Vol 87 (8) ◽  
pp. 51-63
Author(s):  
A. M. Shestakov

An increase the operating temperature range of structural elements and aircraft assemblies is one of the main goals in developing advanced and new models of aerospace equipment to improve their technical characteristics. The most heat-loaded aircraft structures, such as a combustion chamber, high-pressure turbine segments, nozzle flaps with a controlled thrust vector, must have a long service life under conditions of high temperatures, an oxidizing environment, fuel combustion products, and variable mechanical and thermal loads. At the same time, modern Ti and Ni-based superalloys have reached the limits of their operating temperatures. The leading world aircraft manufacturers — General Electric (USA), Rolls-Royce High Temperature Composite Inc. (USA), Snecma Propulsion Solide (France) — actively conduct fundamental research in developing ceramic materials with high (1300 – 1600°C) and ultrahigh (2000 – 2500°C) operating temperatures. However, ceramic materials have a number of shortcomings attributed to the high brittleness and low crack resistance of monolithic ceramics. Moreover, manufacturing of complex configuration and large-sized ceramic parts faces serious difficulties. Nowadays, ceramic composite materials with a high-temperature matrix (e.g., based on ZrC-SiC) and reinforcing filler, an inorganic fiber, (e.g., silicon carbide) appeared most promising for operating temperatures above 1200°C and exhibited enhanced energy efficiency. Ceramic fibers based on silicon compounds possess excellent mechanical properties: the tensile strength more than 2 GPa, modulus of elasticity more than 200 GPa, and thermal resistance at a temperature above 800°C, thus making them an essential reinforcing component in metal and ceramic composites. This review is devoted to silicon carbide core fibers obtained by chemical vapor deposition of silicon carbide onto a tungsten or carbon core, which makes it possible to obtain fibers a 100 – 150 μm in diameter to be used in composites with a metal matrix. The coreless SiC-fibers with a diameter of 10 – 20 μm obtained by molding a polymer precursor from a melt and used mainly in ceramic composites are also considered. A comparative analysis of the phase composition, physical and mechanical properties and thermal-oxidative resistance of fibers obtained by different methods is presented. Whiskers (filamentary crystals) are also considered as reinforcing fillers for composite materials along with their properties and methods of production. The prospects of using different fibers and whiskers as reinforcing fillers for composites are discussed.


Sign in / Sign up

Export Citation Format

Share Document