Using Ring Stiffness to Calculate the Elastic Modulus of Steel-Plastic Composite Pre-Insulated Pipe

2012 ◽  
Vol 581-582 ◽  
pp. 602-605
Author(s):  
Cheng Yang ◽  
Fei Wang ◽  
Guo Wei Wang

Elastic modulus of the pipe mill is one of the most important figures, which decides the character of the mechanics of materials. It is usually gained by experiments or finite element analysis. Combining computing formula of ring stiffness of buried pipeline and test results of ring stiffness of new straight buried thermal pipe (steel-plastic composite pre-insulated pipe), this article uses moment of inertia and equivalent section method to calculate elastic modulus of this pipe catalogue. By comparing with practical test results, the article testifies that this method could be probably used in directly buried installation.

2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


10.2341/08-73 ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 223-229 ◽  
Author(s):  
A. O. Spazzin ◽  
D. Galafassi ◽  
A. D. de Meira-Júnior ◽  
R. Braz ◽  
C. A. Garbin

Clinical Relevance According to finite element analysis, the zirconia ceramic post created higher stress levels in the post and slightly less in dentin compared with glass fiber posts. Resin cement with a high elastic modulus created higher stress levels in the cement layer. The different film thicknesses of cement did not create significant changes in stress levels.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091868
Author(s):  
Shuang Jing ◽  
Anle Mu ◽  
Yi Zhou ◽  
Ling Xie

The seal is the key part of the cone bit. To reduce the failure probability, a new seal was designed and studied. The sealing performance and structure optimization of the X-O composite seal was analyzed and compared by finite-element analysis. The stress and contact pressure were analyzed to establish the main structural parameters that affect sealing performance and the direction of the structural optimization. By optimizing these structural parameters, including the height, and the radial and axial arc radii, an optimized structure is obtained. The results show that (1) the X-O composite seal can meet the seal requirement, the excessive height of the X seal ring is the root cause of the uneven distribution of stress, pressure, and distortion. (2) A new seal structure is obtained, the distribution of pressure and stress is reasonable and even, and the values of stress and pressure are reduced to avoid distortion and reduce the wear. Finally, the field test results of the X-O composite seal of cone bit showed that the service life of the bit bearing increased by 16% on average and the drilling efficiency increased by 11% on average compared with the original cone bit with the O seal ring.


Author(s):  
R. Adibi-Asl ◽  
Ihab F. Z. Fanous ◽  
R. Seshadri

Elastic modulus adjustment procedures (EMAP) have been employed to determine limit loads of pressure components. On the basis of linear elastic Finite Element Analysis (FEA) with non-hardening elastic properties, i.e., by specifying spatial variations in the elastic modulus, numerous set of statically admissible and kinematically admissible distributions can be generated, and both lower and upper bounds on limit loads can be obtained. Some methods such as the classical, r-node and mα methods provide limit loads on the basis of partly-converged distributions, whereas the accuracy of linear matching procedures rely on fully converged distributions. In this paper, a criterion for establishing the degree of convergence of EMAP is developed, and a simple procedure for achieving improved convergence is described. The procedure is applied to some practical pressure component configurations.


Author(s):  
Liangyao Yu ◽  
Liangxu Ma ◽  
Jian Song

This paper presents a new approach to the design, testing and analysis of a magnetorheological brake which uses a multi-path magnetic circuit to satisfy the braking demand of vehicles. In contrast with a general braking system, an automotive brake exhibits an outstanding performance for high torques and long reaction times. We use a proposed power-law model and finite element analysis to obtain the magnetorheological braking performance for a high shear rate and a high-intensity magnetic field. Finite element analysis with different structures is adopted to determine the parameters of the magnetorheological braking and the layout of the magnetic circuits. An integrated prototype is also fabricated and tested. The test results show that the brake torque is relatively high, and the torque can be accurately controlled by the input current. The reaction time is less than 100 ms. We also analyse the experimental results and use these as the basis for fabricating a full-sized prototype. The full-sized prototype generally exhibits a high torque capacity and a fast dynamic response, thereby validating the feasible application of magnetorheological fluids in automotive braking.


2013 ◽  
Vol 275-277 ◽  
pp. 1359-1363 ◽  
Author(s):  
Jeong Soo Kim ◽  
Moon Kyum Kim

Owing to strong nonlinearity of shotcrete and difficulty of determining the equivalent material properties of steel-shotcrete composites for numerical analysis, methods are required to estimate nonlinear behavior of steel-shotcrete composite in the computational aspect efficiently. In this study, the behavior of steel-shotcrete composites, main primary supports in the NATM tunnel, are estimated by finite element method using the fiber beam-column element. The numerical results are compared with results of uniaxial and flexural test. Results of comparison show that finite element analysis of using fiber beam-column element can be an efficient tool of estimating the steel-shotcrete composite as the primary support in the NATM tunnel.


2012 ◽  
Vol 24 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Bintang Yang ◽  
Tianxiang Chen ◽  
Guang Meng ◽  
Zhiqiang Feng ◽  
Jie Jiang ◽  
...  

In this research, a novel safety escape device based on magnetorheological fluid and permanent magnet is designed, manufactured, and tested. The safety escape device with magnetorheological fluid and permanent magnet can provide an increasing braking torque for a falling object by increasing the magnetic field intensity at the magnetorheological fluid. Such increase is realized by mechanically altering the magnetic circuit of the device when the object is falling. As a result, the falling object accelerates first and then decelerates to stop in the end. Finite element analysis is used to determine some of the specifications of the safety escape device for larger braking torque and smaller size. Finite element analysis results are also used for theoretical study and establishment of the dynamic model of the safety escape device. A prototype is realized and tested finally. The experimental test results show that the operation of the prototype conforms to the prediction by the dynamic model and validates the feasible application of magnetorheological fluids in developing falling devices.


Sign in / Sign up

Export Citation Format

Share Document