The Optimization Layout Method of Intelligent Roadside Sensor System in Traffic Management and Control

2012 ◽  
Vol 591-593 ◽  
pp. 1251-1255 ◽  
Author(s):  
Dong Chu Cui ◽  
Yue Yu

The vehicle sensor information and road side sensor information will be collaborative used in traffic management and control. In order to improve the comprehensiveness and economy of the traffic and road conditions’ information collection, we focus on the intelligent roadside system in this paper. Firstly, we analyse the functions of the intelligent roadside system. Through the analysis of the detection range, detection accuracy, price and applicable conditions of similar sensor, we delineate the selection range of the intelligent roadside sensor. Then we determine the layout scheme of the testing equipment sensors for different functions according to different types of network structure. Finally, we apply similarity analysis to optimize the configuration density to reduce system cost by selecting the sensor layout-intensive sections.

Author(s):  
Feifei Xin ◽  
Xiaobo Wang ◽  
Chongjing Sun

In recent years, conflicts between crossing pedestrians and right-turning vehicles have become more severe at intersections in China, where right-turning vehicles are usually not controlled by traffic signals. This study proposes a quantitative method for evaluating the conflict risk between pedestrians and right-turning vehicles at intersections based on micro-level behavioral data obtained from video detection. A typical intersection in Shanghai was selected as the study site. In total, 670 min of video were recorded during the peak hours from 7:30 a.m. to 9:30 p.m on one day. After processing the video information, vehicle and pedestrian tracking data were obtained, including the velocity, acceleration, deceleration, time, and location coordinates. Based on these data, several conflict indicators were proposed and these indicators were extracted automatically using MATLAB to identify pedestrian–right-turning vehicle conflicts and to determine the severity of the conflicts identified. This process identified 93 examples of such conflicts. The conflict risks were quantitatively classified using the K-means fuzzy clustering method and all of the conflicts were assigned to five grades. The characteristics of the conflict distribution and the severity of different types of conflict were also analyzed, which showed that conflicts on different areas on the crosswalk differed in their severity. Based on the conclusions, practical traffic management and control measures are proposed to reduce the risk on pedestrian crossings.


2021 ◽  
Author(s):  
Aharon David ◽  

A large international airport is a microcosm of the entire aviation sector, hosting hundreds of different types of aviation and non-aviation stakeholders: aircraft, passengers, airlines, travel agencies, air traffic management and control, retails shops, runway systems, building management, ground transportation, and much more. Their associated information technology and cyber physical systems—along with an exponentially resultant number of interconnections—present a massive cybersecurity challenge. Unlike the physical security challenge, which was treated in earnest throughout the last decades, cyber-attacks on airports keep coming, but most airport lack essential means to confront such cyber-attacks. These missing means are not technical tools, but rather holistic regulatory directives, technical and process standards, guides, and best practices for airports cybersecurity—even airport cybersecurity concepts and basic definitions are missing in certain cases. Unsettled Topics Concerning Airport Cybersecurity Standards and Regulation offers a deeper analysis of these issues and their causes, focusing on the unique characteristics of airports in general, specific cybersecurity challenges, missing definitions, and conceptual infrastructure for the standardization and regulation of airports cybersecurity. This last item includes the gaps and challenges in the existing guides, best-practices, standards, and regulation pertaining to airport cybersecurity. Finally, practical solution-seeking processes are proposed, as well as some specific potential frameworks and solutions.


Author(s):  
Y. Arockia Suganthi ◽  
Chitra K. ◽  
J. Magelin Mary

Dengue fever is a painful mosquito-borne infection caused by different types of virus in various localities of the world. There is no particular medicine or vaccine to treat person suffering from dengue fever. Dengue viruses are transmitted by the bite of female Aedes (Ae) mosquitoes. Dengue fever viruses are mainly transmitted by Aedes which can be active in tropical or subtropical climates. Aedes Aegypti is the key step to avoid infection transmission to save millions of people in all over the world. This paper provides a standard guideline in the planning of dengue prevention and control measures. At the same time gives the priorities including clinical management and hospitalized dengue patients have to address essentially.


2010 ◽  
Vol 108-111 ◽  
pp. 1158-1163 ◽  
Author(s):  
Peng Cheng Nie ◽  
Di Wu ◽  
Weiong Zhang ◽  
Yan Yang ◽  
Yong He

In order to improve the information management of the modern digital agriculture, combined several modern digital agriculture technologies, namely wireless sensor network (WSN), global positioning system (GPS), geographic information system (GIS) and general packet radio service (GPRS), and applied them to the information collection and intelligent control process of the modern digital agriculture. Combining the advantage of the local multi-channel information collection and the low-power wireless transmission of WSN, the stable and low cost long-distance communication and data transmission ability of GPRS, the high-precision positioning technology of the DGPS positioning and the large-scale field information layer-management technology of GIS, such a hybrid technology combination is applied to the large-scale field information and intelligent management. In this study, wireless sensor network routing nodes are disposed in the sub-area of field. These nodes have GPS receiver modules and the electric control mechanism, and are relative positioned by GPS. They can real-time monitor the field information and control the equipment for the field application. When the GPS position information and other collected field information are measured, the information can be remotely transmitted to PC by GPRS. Then PC can upload the information to the GIS management software. All the field information can be classified into different layers in GIS and shown on the GIS map based on their GPS position. Moreover, we have developed remote control software based on GIS. It can send the control commands through GPRS to the nodes which have control modules; and then we can real-time manage and control the field application. In conclusion, the unattended automatic wireless intelligent technology for the field information collection and control can effectively utilize hardware resources, improve the field information intelligent management and reduce the information and intelligent cost.


Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Shun Qin ◽  
Wai Kin Chan

Accurate segmented mirror wavefront sensing and control is essential for next-generation large aperture telescope system design. In this paper, a direct tip–tilt and piston error detection technique based on model-based phase retrieval with multiple defocused images is proposed for segmented mirror wavefront sensing. In our technique, the tip–tilt and piston error are represented by a basis consisting of three basic plane functions with respect to the x, y, and z axis so that they can be parameterized by the coefficients of these bases; the coefficients then are solved by a non-linear optimization method with the defocus multi-images. Simulation results show that the proposed technique is capable of measuring high dynamic range wavefront error reaching 7λ, while resulting in high detection accuracy. The algorithm is demonstrated as robust to noise by introducing phase parameterization. In comparison, the proposed tip–tilt and piston error detection approach is much easier to implement than many existing methods, which usually introduce extra sensors and devices, as it is a technique based on multiple images. These characteristics make it promising for the application of wavefront sensing and control in next-generation large aperture telescopes.


Author(s):  
Ling Li ◽  
Chengliang Li

AbstractTrack and field sports are known as the "mother of sports". Whether in the field of athletics, fitness, or education, modern track and field sports have developed rapidly. The field of athletics has reached the point where it challenges the limits of humans. The development of China is inseparable from the support of science and technology, and it is inseparable from human scientific research on track and field sports. In order to improve the scientific level of track and field training methods and develop our country's sports industry, this paper designs a track and field training information collection and feedback system based on multi-sensor information fusion. In the method part, this article briefly introduces the content of track and field sports, the mode of multi-sensor information fusion and the existing sports information collection system, using weight coefficient fusion method, D-S evidence theory algorithm and Kalman filter algorithm. This paper designs an information collection and feedback system based on multi-sensor information fusion, and conducts demand analysis, comparative analysis, and data record analysis on this system. By designing the experimental group and the control group, it can be seen that the average performance of the two groups of athletes in the 50-meter run in 8 weeks has improved, and the data of the experimental group and the control group show significant differences. After the experiment, the average performance of the male athletes in the control group increased from around 8.32 to around 8.12, an increase of 4.7%. The performance of male athletes in the experimental group increased from 8.37 to 7.92, an increase of 5.6%. It can also be known that before the experiment, the average performance of the athletes in the selected control group was due to the experimental group, but after 8 weeks of experiment, the increase in the experimental group was higher than that of the control group. This shows that the data collection and feedback system using multi-sensor information fusion can be more accurately and differentiatedly applied to track and field training, and can find problems in athletes, so as to prescribe the right medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Konstantin D. Pandl ◽  
Scott Thiebes ◽  
Manuel Schmidt-Kraepelin ◽  
Ali Sunyaev

AbstractTo combat the COVID-19 pandemic, many countries around the globe have adopted digital contact tracing apps. Various technologies exist to trace contacts that are potentially prone to different types of tracing errors. Here, we study the impact of different proximity detection ranges on the effectiveness and efficiency of digital contact tracing apps. Furthermore, we study a usage stop effect induced by a false positive quarantine. Our results reveal that policy makers should adjust digital contact tracing apps to the behavioral characteristics of a society. Based on this, the proximity detection range should at least cover the range of a disease spread, and be much wider in certain cases. The widely used Bluetooth Low Energy protocol may not necessarily be the most effective technology for contact tracing.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 492
Author(s):  
Valentina Y. Guleva ◽  
Polina O. Andreeva ◽  
Danila A. Vaganov

Finding the building blocks of real-world networks contributes to the understanding of their formation process and related dynamical processes, which is related to prediction and control tasks. We explore different types of social networks, demonstrating high structural variability, and aim to extract and see their minimal building blocks, which are able to reproduce supergraph structural and dynamical properties, so as to be appropriate for diffusion prediction for the whole graph on the base of its small subgraph. For this purpose, we determine topological and functional formal criteria and explore sampling techniques. Using the method that provides the best correspondence to both criteria, we explore the building blocks of interest networks. The best sampling method allows one to extract subgraphs of optimal 30 nodes, which reproduce path lengths, clustering, and degree particularities of an initial graph. The extracted subgraphs are different for the considered interest networks, and provide interesting material for the global dynamics exploration on the mesoscale base.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 329 ◽  
Author(s):  
Yunqi Tang ◽  
Zhuorong Li ◽  
Huawei Tian ◽  
Jianwei Ding ◽  
Bingxian Lin

Detecting gait events from video data accurately would be a challenging problem. However, most detection methods for gait events are currently based on wearable sensors, which need high cooperation from users and power consumption restriction. This study presents a novel algorithm for achieving accurate detection of toe-off events using a single 2D vision camera without the cooperation of participants. First, a set of novel feature, namely consecutive silhouettes difference maps (CSD-maps), is proposed to represent gait pattern. A CSD-map can encode several consecutive pedestrian silhouettes extracted from video frames into a map. And different number of consecutive pedestrian silhouettes will result in different types of CSD-maps, which can provide significant features for toe-off events detection. Convolutional neural network is then employed to reduce feature dimensions and classify toe-off events. Experiments on a public database demonstrate that the proposed method achieves good detection accuracy.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The nonlinear responses of ship rolling motion characterized by a roll damping moment are of great interest to naval architects and ocean engineers. Modeling and identification of the nonlinear damping moment are essential to incorporate the inherent nonlinearity in design, analysis, and control of a ship. A stochastic nonparametric approach for identification of nonlinear damping in the general mechanical system has been presented in the literature (Han and Kinoshits 2012). The method has been also applied to identification of the nonlinear damping moment of a ship at zero-forward speed (Han and Kinoshits 2013). In the presence of forward speed, however, the characteristic of roll damping moment of a ship is significantly changed due to the lift effect. In this paper, the stochastic inverse method is applied to identification of the nonlinear damping moment of a ship moving at nonzero-forward speed. The workability and validity of the method are verified with laboratory tests under controlled conditions. In experimental trials, two different types of ship rolling motion are considered: time-dependent transient motion and frequency-dependent periodic motion. It is shown that this method enables the inherent nonlinearity in damping moment to be estimated, including its reliability analysis.


Sign in / Sign up

Export Citation Format

Share Document