Effect of Ridge Topography on Earthquake Ground Motion

2012 ◽  
Vol 594-597 ◽  
pp. 1696-1701
Author(s):  
Guo Dong Xu ◽  
Zheng Hua Zhou ◽  
Jing Shan Bo ◽  
Wei Hua Fang

The ridge topography can substantially influence seismic ground motion and, in general, causes the amplification of seismic ground motion amplitude at ridges. Fortunately, sets of three-component accelerogram, obtained by the observation arrays for topographic effect at Zigong Xishan, Jiangyou Doutuan and Qingchuan Sanguo from the great Wenchuan earthquake and its aftershocks, provided basic data for analyzing the effect of ridge topography on seismic ground motion. On the base of these acceleration records, peak ground acceleration and response spectrum ratios are calculated, and examined and compared in order to grasp the effect of ridge topography on ground motion. The findings showed that ridge topography has the remarkable effect on seismic ground motion, in which the amplification characteristics varies depending on the shape of ridge topography, and the amplification effect of the horizontal directions are not similar to the vertical direction, and in some periods are even less than 1.0.

1995 ◽  
Vol 85 (5) ◽  
pp. 1343-1358
Author(s):  
Gilbert L. Molas ◽  
Fumio Yamazaki

Abstract New attenuation equations for peak ground acceleration and velocity for Japan are developed. The equations are derived using extensive data recorded by the new JMA-87-type accelerometers, which do not require instrumental corrections that the older SMAC-type accelerometers do. Earthquakes with depths up to 200 km are used to make the equation applicable to subduction zone regions, which are common in Japan. Effects of depth and local site on the attenuation are considered simultaneously with the distance dependence and magnitude dependence using a two-stage regression procedure to separate the magnitude dependence from the distance dependence. Since the resulting normal equations become singular, an iterative partial regression algorithm is proposed. It is found that for the same magnitude and distance, peak ground motion increases as depth increases. The variation of the station coefficients with respect to the corresponding soil-type classification is quite wide. The station coefficients for the peak ground acceleration are found to be weakly correlated with the general soil classification, while a stronger correlation was found for the peak ground velocity. The resulting attenuation relations are given by log10PGA=0.206+0.477MJ−log10r−0.00144r−0.00144r+0.00311h+cia,log10PGV=−1.769+0.628MJ−log10r−0.00130r−0.00144r+0.00222h+civ, where PGA (cm/sec2) and PGV (cm/sec) are the larger of the peak accelerations and velocities from two horizontal components, MJ is the JMA magnitude, r is the closest distance to the fault rupture, h is the depth, and ci is the station coefficient of the recording station. The mean of the coefficients of the JMA stations is given by ci = 0.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Pyi Soe Thein ◽  
Subagyo Pramumijoyo ◽  
Wahyu Wilopo ◽  
Agung Setianto ◽  
Kirbani Sri Brotopuspito ◽  
...  

In this study, we investigated the subsurface structure and strong ground motion parameters for Palu City. One of the major structures in Central Sulawesi is the Palu-Koro Fault system. Several powerful earthquakes have struck along the Palu-Koro Fault during recent years, one of the largest of which was an M 6.3 event that occurred on January 23, 2005 and caused several casualties. Following the event, we conducted a microtremor survey to estimate the shaking intensity distribution during the earthquake. From this survey we produced a map of the peak ground acceleration, velocity and ground shear strain in Palu City. We performed single observations of microtremors at 151 sites in Palu City. The results enabled us to estimate the site-dependent shaking characteristics of earthquake ground motion. We also conducted 8-site microtremor array investigation to gain a representative determination of the soil condition of subsurface structures in Palu. From the dispersion curve of array observations, the central business district of Palu corresponds to relatively soil condition with Vs ≤ 300 m/s, the predominant periods due to horizontal vertical ratios (HVSRs) are in the range of 0.4 to 1.8 s and the resonant frequency are in the range of 0.7 to 3.3 Hz. Three boreholes were throughout the basin especially in Palu area to evaluate the geotechnical properties of subsurface soil layers. The depths are varying from 1 m to 30 m. Strong ground motions of the Palu area were predicted based on the empirical stochastic green’s function method. Peak ground acceleration and peak ground velocity becomes more than 0.04 g and 30 kine in some areas, which causes severe damage for buildings in high probability. Keywords: Palu-Koro fault, microtremor, bore holes, peak ground acceleration and velocity.


2021 ◽  
Vol 4 (4) ◽  
pp. 89
Author(s):  
Ercan Işık ◽  
Ehsan Harirchian ◽  
Aydın Büyüksaraç ◽  
Yunus Levent Ekinci

Seismic hazard analysis of the earthquake-prone Eastern Anatolian Region (Turkey) has become more important due to its growing strategic importance as a global energy corridor. Most of the cities in that region have experienced the loss of life and property due to significant earthquakes. Thus, in this study, we attempted to estimate the seismic hazard in that region. Seismic moment variations were obtained using different types of earthquake magnitudes such as Mw, Ms, and Mb. The earthquake parameters were also determined for all provincial centers using the earthquake ground motion levels with some probabilities of exceedance. The spectral acceleration coefficients were compared based on the current and previous seismic design codes of the country. Additionally, structural analyses were performed using different earthquake ground motion levels for the Bingöl province, which has the highest peak ground acceleration values for a sample reinforced concrete building. The highest seismic moment variations were found between the Van and Hakkari provinces. The findings also showed that the peak ground acceleration values varied between 0.2–0.7 g for earthquakes, with a repetition period of 475 years. A comparison of the probabilistic seismic hazard curves of the Bingöl province with the well-known attenuation relationships showed that the current seismic design code indicates a higher earthquake risk than most of the others.


2013 ◽  
Vol 353-356 ◽  
pp. 2301-2304
Author(s):  
Fan Wu ◽  
Ming Wang ◽  
Xin Yuan Yang

High-rise buildings, as a result of rapid urbanization in China, become one of popular structure kind. However, there have been few seismic vulnerability studies on high-rise buildings, and few fragility curves have been developed for the buildings. Based on the published data of more than 50 high rises and super high rises, the structural information such as building heights, mode periods, locations and sites, the maximum design story drift ratios, are collected and analyzed. The vulnerability analysis for high rises uses response spectrum displacement as seismic ground motion input, since the structures have comparatively long natural period. Using statistics and regression analysis, the relationship between the maximum story drift ratio and response spectrum displacement is established. Based on height groups and earthquake design codes, the fragility curves of different performance levels can be developed. These curves can provide good loss estimation of high rise structural damage under earthquake ground motion.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Francesca Bozzoni ◽  
Carlo Giovanni Lai ◽  
Laura Scandella

The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN) station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram) described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.<br />


Author(s):  
Athanasius Cipta ◽  
Phil Cummins ◽  
Masyhur Irsyam ◽  
Sri Hidayati

We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive to near-surface conditions (i.e., Vs30), our results suggest that, for basins as deep as Jakarta&rsquo;s, available GMPEs cannot be relied upon to accurately estimate the effect of basin depth on ground motions at long periods (&gt;1 s). Amplitudes at such long periods are influenced by entrapment of seismic waves in the basin, resulting in longer duration of strong ground motion, and interference between incoming and reflected waves as well as focusing at basin edges may amplify seismic waves. In order to simulate such phenomena in detail, a basin model derived from a previous study is used as a computational domain for deterministic earthquake scenario modeling in a 2-dimensional cross-section. A Mw 9.0 megathrust, a Mw 6.5 crustal thrust and a Mw 7.0 instraslab earthquake are chosen as scenario events that pose credible threats to Jakarta, and the interactions with the basin of seismic waves generated by these events were simulated. The highest PGV amplifications are recorded at sites near the middle of the basin and near its southern edge, with maximum amplifications of PGV in the horizontal component of 200% for the crustal, 600% for the megathrust and 335% for the deep intraslab earthquake scenario, respectively. We find that the levels of ground motion response spectral acceleration fall below those of the 2012 Indonesian building Codes's design response spectrum for short periods (&lt; 1 s), but closely approach or may even exceed these levels for longer periods.


An effective earthquake (Mw 7.9) struck Alaska on 3 November, 2002. This earthquake ruptured 340 km along Susitna Glacier, Denali and Totschunda faults in central Alaska. The peak ground acceleration (PGA) was recorded about 0.32 g at station PS10, which was located 3 km from the fault rupture. The PGA would have recorded a high value, if more instruments had been installed in the region. A numerical study has been conducted to find out the possible ground motion record that could occur at maximum horizontal slip during the Denali earthquake. The current study overcomes the limitation of number of elements to model the Denali fault. These numerical results are compared with observed ground motions. It is observed that the ground motions obtained through numerical analysis are in good agreement with observed ground motions. From numerical results, it is observed that the possible expected PGA is 0.62 g at maximum horizontal slip of Denali fault.


Sign in / Sign up

Export Citation Format

Share Document