Temperature Sensitivity Analysis of Massive Concrete Mixing with Slag Powder and Fly Ash

2012 ◽  
Vol 594-597 ◽  
pp. 804-807
Author(s):  
Feng Wang ◽  
Chi Chen

For concrete double mixing with slag powder and fly ash, in order to more accurately measure the temperature and crack, the calculation model of transient temperature field is established by finite element method, as taking the temperature controlling of massive concrete mixing with slag powder and fly ash of pile cap in Dongsha Bridge for example. The effect of cooling water temperatures and pouring temperature on temperature field of pile cap are analyzed. The results show that the cooling water temperature has less effect on central maximum temperature in early days, but more effect on cooling rate in late stage. The pouring temperature has more effect on maximum temperature. The temperature peak will rise with pouring temperature increasing, but the time of temperature peak arising is invariant.

2013 ◽  
Vol 671-674 ◽  
pp. 1932-1935
Author(s):  
Yao Tan ◽  
Feng Wang ◽  
De Qiang Deng ◽  
Chang Jie Wang

In order to make the temperature controlling measure of massive concrete mixing with slag powder and fly ash effectively. Taking Guangzhou East Bridge sand cap-based temperature control project for example,the pile caps transient temperature field calculation model is established by finite element method. The different water cooling time and hydration rate are analyzed. The results show that the cooling time extending has less effect on central maximum temperature of double-doped concrete in early stage, but the times arriving corresponding stable temperature is earlier. The hydration rate has more effect on maximum temperature.


2011 ◽  
Vol 197-198 ◽  
pp. 1389-1394
Author(s):  
Sun Yi Chen

When the operating process of delay coking is cyclically changing from 25°C to 500°C, it would usually induce the effect of heat treatment on the shell of coke drum. After a special model of the kinetic medium climbing along the inside-wall of the coke drum at a steady rate set up, the resulting two-dimensional kinetic temperature field of shell in radial and axial directions has been calculated and analyzed by FEM. The relation between the material physical property of the shell and its temperature has been considered. The results show that the radial temperature difference or the axial temperature difference caused by the cooling water is more than that caused by the hot oil. The maximum temperature difference between the inside-wall and the outside-wall is 40°C below the medium level, 30mm by the hot oil and 60 °C or 25 mm by the cooling water. The circumferential uneven temperature field, location and concave/convex or incline/bend of body have been surveyed and analyzed. The lat-circle deformation of transverse section has been discussed.


2013 ◽  
Vol 838-841 ◽  
pp. 65-68
Author(s):  
Zhen Xiao Xue ◽  
Yu Wen Ju

Based on a wind turbine thick concrete raft foundation for the engineering background, through the adiabatic temperature rise test, the datum of the hydration heat of concrete are obtained; and concrete solidification temperature field numerical simulation and analysis are conducted by finite element analysis software ANSYS; by means of the temperature sensor measurement systems, the foundation concrete pouring process variation of the temperature field is obtained by real-time monitoring. Studies show that: the temperature rise inside the concrete points has the same trend, but the peak and the peak of the age are different. The maximum temperature inside the concrete is mostly shown in the initial 3-5d of concreting; temperature gradient along the thickness direction of the foundation is obvious; massive concrete is significantly affected by the outside temperature.


2014 ◽  
Vol 587-589 ◽  
pp. 1407-1411 ◽  
Author(s):  
Jun Su ◽  
Guo Wang Zuo ◽  
Wei Li

The paper analyzed the temperature control technique measures of mass concrete in the pile cap of main pier in Yangtze River Bridge. Consider the effect of the cooling pipe, ANSYS finite element analytical software was used to calculate the temperature field of the pile cap in the construction, the distribution rules of the temperature field was simulated by finite element analysis. It is shown that the cooling effect of the mass concrete is obvious by using cooling water pipe, the finite element calculation results can be used to lead to the design and construction. It also provides the reference to develop a reasonable temperature control solutions during the construction of the similar mass concrete.


2005 ◽  
Vol 291-292 ◽  
pp. 619-624 ◽  
Author(s):  
D.Y. Zhao ◽  
Min Jie Wang ◽  
M.C. Song

Plastic profiles produced by extrusion die are cooled down and calibrated by calibrators, so it is an important basis to solve design problems of calibrators that how to obtain the transient temperature field of cooling process of hot plastic profiles. Based on the analysis of heat transfer ways during the cooling process, computation model, initial and boundary conditions are studied deeply, and then ANSYS is applied to simulate the cooling process of plastic profiles. Lastly, the transient temperature field of the cooling process is gain. Results of the numerical simulation show that the temperature drops of functional blocks, main-walls and inner-ribs are reduced in order of priority. Based on the results, the cooling water channels can be adjusted in order to improve the distributing uniformity of temperature field. All this is effective to the calibrators’ design.


2020 ◽  
Vol 12 (2) ◽  
pp. 122-128
Author(s):  
D.K. Sahoo ◽  
M.S.V.R. Kishor ◽  
D.P. Sahoo ◽  
S. Sarkar ◽  
A. Behera

Background: Industries such as thermal power plants use coal as a source of energy and release the combustion products into the environment. The generation of these wastes is inevitable and thus needed to be reused. In India, coals with high ash content usually between 25 to 45% are used. The refractory bricks that were used earlier in steel industries were mainly based on silica, magnesia, chrome, graphite. In modern days, several other materials were introduced for the manufacturing of refractory bricks such as mullite, chrome-magnesite, zircon, fused cast, and corundum. The materials selection for refractory brick manufacturing depends on various factors such as the type of furnace and working conditions. Objectives: The current work aims to focus on the fly-ash subjected to spark plasma sintering process with a maximum temperature of 1500 °C and pressure 60 MPa for 15 minutes and to characterize to observe the properties with respect to their microstructure. Methods: Fly-ash collected from Rourkela Steel Plant was sintered using spark plasma sintering machine at the Indian Institute of Technology, Kharagpur. The powder placed in a die was subjected to a heating rate of 600-630 K/min, up to a maximum temperature of 1500˚C. The process took 15 minutes to complete. During the process, the pressure applied was ranging between 50 to 60 Mpa. 5-10 Volts DC supply was given to the machine with a pulse frequency of 30-40 KHz. The sintered product was then hammered out of the die and the small pieces of the sintered product were polished for better characterization. The bricks collected from Hindalco Industries were also hammered into pieces and polished for characterization and comparison. Results: The particles of fly-ash as observed in SEM analysis were spherical in shape with few irregularly shaped particles. The sintered fly-ash sample revealed grey and white coloured patches distributed around a black background. These were identified to be the intermetallic compounds that were formed due to the dissociation of compounds present in fly-ash. High- temperature microscopy analysis of the sintered sample revealed the initial deformation temperature (IDT) of the fly-ash brick and the refractory brick which were found to be 1298 °C and 1543 °C, respectively. The maximum hardness value observed for the sintered fly-ash sample was 450 Hv (4.413 GPa) which is due to the formation of nano-grains as given in the microstructure. The reason behind such poor hardness value might be the absence of any binder. For the refractory brick, the maximum hardness observed was 3400 Hv (33.34 GPa). Wear depth for the sintered fly-ash was found to be 451 μm whereas for the refractory brick sample it was 18 μm. Conclusion: The fly-ash powder subjected to spark plasma sintering resulted in the breaking up of cenospheres present in the fly ash due to the formation of intermetallic compounds, such as Cristobalite, syn (SiO2), Aluminium Titanium (Al2Ti), Magnesium Silicon (Mg2Si), Maghemite (Fe2O3), Chromium Titanium (Cr2Ti) and Magnesium Titanium (Mg2Ti), which were responsible for the hardness achieved in the sample. A large difference in the maximum hardness values of sintered fly-ash and refractory brick was observed due to the hard nitride phases present in the refractory brick.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


2013 ◽  
Vol 368-370 ◽  
pp. 1112-1117
Author(s):  
Jin Hui Li ◽  
Liu Qing Tu ◽  
Ke Xin Liu ◽  
Yun Pang Jiao ◽  
Ming Qing Qin

In order to solve the environment pollution of limestone powder during production of limestone manufactured sand and gravel and problem of lack of high quality fly ash or slag powder in ocean engineering, ultra-fine limestone powder was selected for preparation of green high-performance marine concrete containing fly ash and limestone powder and that containing slag powder and limestone powder for tests on workability, mechanical performance, thermal performance, shrinkage, and resistance to cracking and chloride ion permeability. And comparison was made between such green high-performance concrete and conventional marine concrete containing fly ash and slag powder. Moreover, the mechanism of green high-performance marine concrete was preliminary studied. Results showed that ultra-fine limestone powder with average particle size around 10μm had significant water reducing function and could improve early strength of concrete. C50 high-performance marine concrete prepared with 30% fly ash and 20% limestone powder or with 30% slag powder and 30% limestone powder required water less than 130kg/m3, and showed excellent workability with 28d compressive strength above 60MPa, 56d dry shrinkage rate below 300με, cracking resistance of grade V, 56d chloride ion diffusion coefficient not exceeding 2.5×10-12m2/s. Mechanical performance and resistance to chloride ion permeability of limestone powder marine concrete were quite equivalent to those of conventional marine concrete. But it had better workability, volume stability and cracking resistance. Moreover, it can serve as a solution to the lack of high quality fly ash and slag powder.


Sign in / Sign up

Export Citation Format

Share Document