Effect of C6H4SO2NNaCO•2H2O on Microstructure and Electrochemical Properties of Electrodeposited La-Mg-Ni Alloys

2012 ◽  
Vol 602-604 ◽  
pp. 570-574
Author(s):  
Jin Yu ◽  
Jing Zhou ◽  
Li Wei Wang

With lanthanum, magnesium and nickel chloride as the main salt, citric acid (C3H8O7•H2O) as a complexing agent, La-Mg-Ni storage materials were prepared by galvanostatic electrodeposition method in aqueous solution. The effect of additive C6H4SO2NNaCO•2H2O on the properties of electrodeposited alloy film was studied. The results showed that: adding appropriate amount of C6H4SO2NNaCO•2H2O may be effective in improving the surface morphology of the La-Mg-Ni alloy film, and be more conducive to the formation of LaMg2Ni9alloy phase; when the dosage was 0.20g/L, the cathodic polarization of the bath was the strongest, and cracks and pores were the least on the alloy film surface prepared by electro-deposited, the apparent activation free energy of alloy film was 48.2 kJ/mol, electrode absorption level Q was 0.030μF/cm2, the alloy film resistor Rd was 138.5Ω/cm2.

2020 ◽  
Vol 27 (12) ◽  
pp. 2050018
Author(s):  
AHMET OZAN GEZERMAN

Anticorrosion requirements for the metallurgy, automotive, and aeronautical industries have increased in recent years, for which alternative plating chemicals must be developed. This study focuses on obtaining a Zn-Ni alloy plating with higher corrosion resistance and brightness. For this purpose, tetraethylenepentaamine as complexing agent, triethanolamine as the surfactant, and gelatin and [Formula: see text]-aminobenzenesulfonic acid as brightening agents for the plating were selected and their optimal concentrations were determined for applications. The optimal Zn-Ni ratio and plating thickness were analyzed using an X-ray Dal device. Improved plating performance of the Zn-Ni alloys was achieved with a Zn-Ni alloy containing 12–14% Ni.


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


1971 ◽  
Vol 26 (3) ◽  
pp. 343-352 ◽  
Author(s):  
R.L. Mössbauer ◽  
M. Lengsfeld ◽  
W. Von Lieres ◽  
W. Potzel ◽  
T. Teschner ◽  
...  

Abstract The Ir-Fe and Ir-Ni alloy systems were studied over the whole composition range by means of the nuclear resonance absorption of the 73 keV y-rays of 193Jr and of the 14.4 keV y-rays of 57Fe. The magnetic hyperfine field at the Ir-nuclei in Ir-Ni alloys decreases approximately linearly with the Ir concentration from - 460 kOe at 4.2 K in very dilute alloys to zero at about 20 at.-% Ir. This behaviour is paralleled by the decrease of the magnetic moment per Ni atom as determined from bulk magnetization measurements. The hyperfine fields at both Ir and Fe were measured for the ferromagnetic bcc phase of the Ir-Fe system. They turned out to be virtually independent of concentration with values of about -1400 kOe and - 330 kOe, respectively. Linewidths increasing with the Ir concentration indicate a distribution of hyperfine fields. The fee phase of the Ir-Fe system has been found to be paramagnetic at 4.2 K throughout the range of its existence. The dependence of the hyperfine fields on concentration is discussed in terms of a rigid 3d-band model combined with local shielding. A discussion of the concentration dependence of the 193Ir and 57Fe isomer shifts has to take into account lattice expansion as well as band repopulation effects.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Li Sun ◽  
John E. Pearson ◽  
Judith C. Yang

AbstractThe nucleation and growth of Cu2O and NiO islands due to oxidation of Cu-24%Ni(001) films were monitored at various temperatures by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands were observed to form with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. Similar to Cu oxidation, the cross-sectional area growth rate of the oxide island is linear indicating oxygen surface diffusion is the primary mechanism of oxide growth.


2012 ◽  
Vol 736 ◽  
pp. 229-240 ◽  
Author(s):  
Sudhakar Panday ◽  
P. Jeevanandam ◽  
B.S. Sunder Daniel

This review article deals with the synthesis, characterization and magnetic properties of Co-Ni nanoalloys. The various physical and chemical methods for the synthesis of Co-Ni alloy nanoparticles are discussed. Co-Ni alloy nanoparticles with different size and shape such as spherical, rods, wires chain-like assembly are found to depend on the synthesis method and experimental condition. The structure of Co-Ni alloys is eitherfcc,hcpor mixedfccandhcpphase and found to depends on size, shape and concentration of Co in the Co-Ni alloys. Sodium hydroxide (NaOH) concentration and Co to Ni ratio influence the shape of bimetallic Co-Ni nanoparticles. Pt nucleating agents produced smaller size of Co-Ni alloy particles compared to Ru and Ag. Higher Co concentration in the Co-Ni alloys also influences the size alloy particles. The magnetic properties of Co-Ni nanoalloys depend on the size, shape and composition of the binary alloys. Surface oxidation of Co-Ni alloy nanoparticles decrease the saturation magnetization and increases with Co concentration in the alloys. The shape of Co-Ni alloy nanoparticles has an influence on coercivity. The microwave absorption properties of the Co-Ni alloys found to depend on the shape, size and composition of the binary alloys. The absorbance peaks shifts to higher frequency with decrease in size of the alloy particles. Potential applications of Co-Ni alloys in various fields are highlighted.


2019 ◽  
Vol 31 (4) ◽  
pp. 891-895
Author(s):  
Dinesh Kumar Chelike ◽  
K. Juliet Gnana Sundari

Considering the good corrosion resistance of Zn-Ni alloy, it is selected in the present study to be the protective coating on mild steel and it is considered as a strong candidate for the replacement of environmentally hazardous cadmium. Zn-Ni alloy coating is applied by electrodeposition at optimum temperature, current density and time. The bath solution used is consisting of EDTA as complexing agent. The electrodeposition is also carried out with tartaric acid and benzaldehyde additives to have good corrosion resistance and brightness. The electrodeposits obtained with and without additives are examined for nature and alloy composition. The corrosion behaviour of the electrodeposits is studied by Tafel polarization and electrochemical impedance spectroscopy.


2002 ◽  
Vol 752 ◽  
Author(s):  
Tetsuya Ozaki ◽  
Yi Zhang ◽  
Masao Komaki ◽  
Chikashi Nishimura

ABSTRACTNovel preparation process of V-Ni alloys for hydrogen purification membrane using chemical transport was investigated. Vanadium, NH4Cl, and PtCl2 as evaporating source were put in one side of a fused-silica tube, and Ni substrate was put in the other side. The fused-silica tube was sealed in vacuo, and set in a furnace with temperature gradients. Evaporating source temperature was 1173–1273 K. Substrate temperature was 3–100 K higher than the evaporating source temperature. This process consists of formation of HCl from NH4Cl and PtCl2, chemical transport of vanadium under temperature gradient via chlorides in the presence of HCl, and diffusion of the transported V into the Ni substrate. EDX line profile of cross section of the substrates after the process demonstrated that V diffused into the Ni substrates. Distribution of V concentration in the substrates was dependent on the substrate temperature and the temperature difference between the substrate and the evaporating source. Heating condition was optimized to obtain homogeneous V-Ni alloy. When the substrate temperature and evaporating-source temperature were 1228 K and 1223 K, respectively, V diffused homogeneously into the Ni substrate with thickness of 20 μm, and V concentration attained in the substrate was higher than 70at%.


2011 ◽  
Vol 199-200 ◽  
pp. 426-430
Author(s):  
Bo Quan Jiang ◽  
Jiang Nan Zhang ◽  
Yu De Liu ◽  
Jian Guo Zou

The osmosis pressure was introduced to improve the conventional electroless plating process for preparing porous ceramic supported Pd/Ag inorganic composite membrane. The effects of temperature (t), molar ratio of hydrazine to total metal ions(y), molar ratio of silver ions to palladium ions(x), concentrations of ethylene diamine tetraacetic acid (EDTA) and sucrose solution on the metal deposition rate, silver content in alloy film, surface morphology of film and permeation properties of the membrane were investigated and their optimal conditions were determined to be: [MET]=5mM, x = 20%, y = 1, [EDTA] = 40g•L-1, t = 40 °C, pH =11 and sucrose solution concentration of 6 M. Under these optimal conditions, the prepared Pd/Ag alloy film with thickness of 7.9 μm demonstrated good permeation properties with nitrogen free and hydrogen permeation rate of 8.8×10-3m3•m-2•s-1at 0.3 MPa and 473 K.


2011 ◽  
Vol 696 ◽  
pp. 82-87 ◽  
Author(s):  
Georgina Zimbitas ◽  
Willem G. Sloof

A numerical model is presented to simulate the diffusional transport of oxygen and that of an alloying element, within a 1-D binary Ni alloy, leading to the selective oxidation of the alloying element and the formation of an internal oxide precipitate. This specific model is written in MATLAB and, with the aid of the Matlab Toolbox, is coupled to the ThermoCalc extensive database. A reaction time is introduced to overcome problems related to the difficulty of formation of the internal oxide. Two cases are considered: Al as the alloying element for which the solubility product of the oxide forming elements is small, and Mn for which it is large.


2016 ◽  
Vol 193 ◽  
pp. 275-283 ◽  
Author(s):  
Takayuki Yamamoto ◽  
Toshiyuki Nohira ◽  
Rika Hagiwara ◽  
Atsushi Fukunaga ◽  
Shoichiro Sakai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document