Optimization of the Submerged Fermentation Conditions of Ganoderma Lucidum with High Triterpenoids Production by Response Surface Analysis

2012 ◽  
Vol 621 ◽  
pp. 259-262
Author(s):  
Mei Lin Cui ◽  
Guo Qing He

In this paper, yeast extract concentration, incubation days and inoculation was made as independent variables, the production of intracellular triterpenoids, intracellular polysaccharides and mycelia biomass were made as response values, we set up central composite design of three factors and three levels. Through the analysis of the regression model, we could see that when yeast extract concentration was 1.91%, the inoculation was 14.99% and the incubation days was 4.24d, the production of intracellular triterpenoids, intracellular polysaccharides and mycelia biomass was 100.654 mg/100ml, 58.5968 mg/100ml, 2.39258 g/100ml, respectively.

2014 ◽  
Vol 625 ◽  
pp. 920-923 ◽  
Author(s):  
Halifah Pagarra ◽  
Roshanida Abd Rahman ◽  
Rosli Md. Illias ◽  
Nor Azah Ramli

A central composite design was employed to optimize the extraction of pectin from Nephrolepis biserrata leaves. The independent variables were pH (1.5 to 2.5), extraction time (60 to 120 minutes) and temperature (60oC to 100oC). The combined effect of these variables on yields of pectin was investigated. The results showed that the yield of extracted pectin ranged from 3.76% to 8.50% (w/w, based on dry weight of Nephrolepis biserrata leaves). The optimum condition for the yield of pectin extraction was predicted at pH (1.5), extraction time (76.25 minutes) and temperature (100oC). Under the optimum condition, the actual pectin yield was 8.18%, which was below the predicted extraction condition of 8.316 %. The characteristics were 47.52% galacturonic acid and 83.71% degree of esterification. Keyword: Nephrolepis biserrata leaves, Extraction, Pectin, RSM, Characterization.


2013 ◽  
Vol 662 ◽  
pp. 319-322
Author(s):  
Tong Wang ◽  
Yu Mei Lu ◽  
Chao Qun Wang ◽  
Kun Jiang ◽  
Fei Xie ◽  
...  

Using cutting speed and the roughness as index, the five factors as pulse duration, peak current, offset, ratio of pulse interval to pulse duration and worktable feed were chosen in dry finishing. Based on the single factor experiment, the central composite design (CCD) method is used to study the effects of the five factors and their interactions on cutting speed and the surface roughness and develop empirical models for cutting speed and roughness Ra. Significant order influencing cutting speed and roughness are found. The results of the verification test show that Ra regression model and cutting speed regression model have high reliability, and can achieve significant prediction effect.


Author(s):  
Jing-Iong Yang ◽  
Jen-Min Kuo ◽  
Wen-Ming Chen ◽  
Huei-Jing Ke ◽  
Yi-Ju Chou

After undergoing keratinase digestion, feather wastes could have a great potential as a source of proteins and amino acids for many applications. In this study, the fermentation conditions of feather-degrading Meiothermus sp. strain I40 (I40) were optimized to enhance the biodegradation of chicken feather to hydrolysates. Initially, the factors essential for I40 keratinase production in submerged fermentation were screened, whereas response surface methodology (RSM) was then employed to evaluate the interactions among the effective factors. At first stage, eight fermentation parameters were screened using a Plackett-Burman (PB) design. Four effective factors identified by PB screening, namely feather concentration, tryptone concentration, yeast extract concentration, and incubation temperature, were further investigated their effects on keratinase production by RSM using central composite design (CCD). The I40 fermentation conditions for maximal keratinase activity were as follows: tryptone concentration 0.16 percent (w/v), yeast extract concentration 0.27 percent (w/v), feather concentration 0.08 percent (w/v), and incubation temperature at 51.7°C for 72 hr under 120 rev/min shaking. Compared to the initial stage, a 13.3-fold increase in keratinase activity was achieved when I40 incubated in the optimized conditions.


Author(s):  
Robert C. Williges ◽  
Marvin L. Baron

Transfer of training from a pursuit rotor to an epicycloid pursuit rotor was assessed by means of a response surface methodology (RSM) central-composite design. Number of training trials, time between training trials, and tracking speed of the training task were combined in a three-factor, RSM central-composite design. Multiple-regression prediction equations relating these three independent variables to trials to criterion on the epicycloid pursuit rotor were calculated for both an unreplicated and replicated RSM design. A representative first-order response surface was plotted for the replicated design. The results are discussed in terms of necessary RSM central-composite design modifications and the overall applicability of using RSM in transfer of training research.


2019 ◽  
Vol 6 (2) ◽  
pp. 164
Author(s):  
Rofiq Sunaryanto ◽  
Diana Nurani

Response Surface Optimization of Medium Fermentation for Streptomyces prasinopilosus as An Antifungal against Ganoderma boninenseGanoderma boninense is one of the pathogenic fungi that cause basal stem rot (BPB) on oil palm plants. This research aims to study the effect of carbon sources, nitrogen sources, and minerals on the production of Streptomyces prasinopilosus active compounds. Lactose, yeast extract, and minerals are medium components that show a real influence on the production of S. prasinopilosus active compounds. Optimization of the factors that have significant influence was predicted by the second-order model, statistically through a central composite design (CCD). The highest S. prasinopilosus active compound production, with a medium composition of 44.77 g L-1 lactose, 13.02 g L-1 yeast extract, and 15.95 mL L-1 mineral solution, was predicted by the quadratic model to reach 32269366.338 peak area unit on high-performance liquid chromatography (HPLC). The verification of the mathematical model of the production of the active compounds through experiments in the laboratory was 27,203,907.310 peak area unit. This result was 15.7% lower compared to the result of the quadratic model. Optimization increased S. prasinopilosus active compound 9-fold compared to that before optimization.Keywords: active compound; G. boninense; optimization; RSM; S. prasinopilosus ABSTRAKGanoderma boninense merupakan salah satu jamur patogen yang menyebabkan penyakit busuk pangkal batang atau biasa disebut BPB pada tanaman kelapa sawit. Penelitian bertujuan mempelajari pengaruh sumber karbon, sumber nitrogen, dan mineral terhadap produksi senyawa aktif S. prasinopilosus. Laktosa, yeast extract, dan mineral adalah komponen medium yang menunjukkan pengaruh nyata terhadap produksi senyawa aktif S. prasinopilosus. Optimasi terhadap faktor yang berpengaruh nyata diprediksi dengan model orde dua melalui rancangan statistis central composite design (CCD). Produksi senyawa aktif S. prasinopilosus tertinggi diprediksi oleh model kuadratik mencapai 32269366,338 luasan puncak kromatografi cair kinerja tinggi (KCKT) dengan komposisi medium laktosa 44,77 g L-1, yeast extract 13,02 g L-1, dan larutan mineral 15,95 mL L-1. Verifikasi model matematis produksi senyawa aktif yang dihasilkan melalui percobaan di laboratorium adalah sebesar 27.203.907,310 luasan puncak kromatogram KCKT. Hasil ini lebih rendah 15,7% dibandingkan dengan model kuadratik hasil optimasi. Optimasi meningkatkan senyawa aktif S. prasinopilosus 9 kali lipat dibandingkan sebelum optimasi.


Sign in / Sign up

Export Citation Format

Share Document