Synthesis of Ortho Phthaloyl Chloride Using Triphosgene by Response Surface Methodology

2013 ◽  
Vol 634-638 ◽  
pp. 3026-3032
Author(s):  
Xuan Tang ◽  
Xi Tao Cheng ◽  
Feng Lin Huang

A simple approach for the synthesis of Ortho Phthaloyl Chloride(OPC) was studied .Response surface methodology (RSM) was used to optimize the synthesis conditions of OPC. A 4-factor central composite design (CCD) was used for experimental design and analysis to obtain the optimal processing parameters, such as amount of triphosgene(BTC), amount of catalyst, reaction temperature and time. The 3-D response surface and the contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum reaction conditions were as follows: amount of BTC 62 g, amount of cat. 3.3 g, reaction temperature 75°C, reaction time 5 h. Under these conditions, The yield of OPC was 96.61%. Comparison of predicted and experimental values revealed good correspondence, implying that empirical model could be used to adequately describe the relationship between the factors and response in OPC synthesis process.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Bin Ji ◽  
Fang Dong ◽  
Miao Yu ◽  
Long Qin ◽  
Dan Liu

The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme(Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3to SFPSI) were tested. Furthermore, the characterization and antioxidant activity of Se-SFPSIin vivowere investigated. The result showed that the actual experimental Se content of Se-SFPSI was 3.352 mg/g at the optimum reaction conditions of reaction time 8 h, reaction temperature 71°C, and ratio of Na2SeO3to SFPSIB 1.0 g/g. A series of experiments showed that the characterization of Se-SFPSIB was significantly different from that of SFPSIB. Additionally, antioxidant activity assay indicated that the Se-SFPSIB could increase catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity of mice bearing tumor S180in blood, heart, and liver while decreasing malondialdehyde (MDA) levels. It can be concluded that selenylation is a feasible approach to obtain seleno-polysaccharide which was utilized as highly biological medicine or functional food.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2566 ◽  
Author(s):  
Mohammad Anwar ◽  
Mohammad Rasul ◽  
Nanjappa Ashwath ◽  
Md Rahman

In this study, the production process of second-generation biodiesel from Australian native stone fruit have been optimised using response surface methodology via an alkali catalysed transesterification process. This process optimisation was performed varying three factors, each at three different levels. Methanol: oil molar ratio, catalyst concentration (wt %) and reaction temperature were the input factors in the optimisation process, while biodiesel yield was the key model output. Both 3D surface plots and 2D contour plots were developed using MINITAB 18 to predict optimum biodiesel yield. Gas chromatography (GC) and Fourier transform infrared (FTIR) analysis of the resulting biodiesel was also done for biodiesel characterisation. To predict biodiesel yield a quadratic model was created and it showed an R2 of 0.98 indicating the satisfactory performance of the model. Maximum biodiesel yield of 95.8% was obtained at a methanol: oil molar ratio of 6:1, KOH catalyst concentration of 0.5 wt % and a reaction temperature of 55 °C. At these reaction conditions, the predicted biodiesel yield was 95.9%. These results demonstrate reliable prediction of the transesterification process by Response surface methodology (RSM). The results also show that the properties of the synthesised Australian native stone fruit biodiesel satisfactorily meet the ASTM D6751 and EN14214 standards. In addition, the fuel properties of Australian native stone fruit biodiesel were found to be similar to those of conventional diesel fuel. Thus, it can be said that Australian native stone fruit seed oil could be used as a potential second-generation biodiesel source as well as an alternative fuel in diesel engines.


2021 ◽  
Vol 17 (1) ◽  
pp. 50-55
Author(s):  
Basem Elarbe ◽  
Ibrahim Elganidi ◽  
Norhayati Abdullah ◽  
Kamal Yusoh ◽  
Norida Ridzuan

In the recent years, response surface methodology (RSM) is one of the most common optimization methods employed in the chemical process. The satisfactory model for predicting the maximum yield in solution polymerization has been a challenge due to various conditions during the synthesis process. In this study, interactive impacts of three parameters which are reaction time, concentration of initiator, and reaction temperature on the yield in free radical polymerization of SABA copolymer using toluene as solvent was investigated using experimental design central composite design (CCD) model under response surface methodology (RSM). The result showed the optimization conditions were reaction time of 7 h, initiator concentration of 1 wt %, and reaction temperature of 90 oC with the corresponding yield of 97.31%. The analysis of the regression model (ANOVA) detected an R2 value of 0.9844, that the model is able to clarify 98.44% of the data variation, and just 1.23% of the whole differences is not clarified by the model. Three experimental validation runs were carried out using the optimal replicate conditions and the highest average yield value obtained is 97.15%. There is an error of about 0.97% as compared to the expected value.Therefore, the results indicate that this model is reliable and is able to predict the yield response accurately. it established that the regression model is extremely significant, indicating a strong agreement between the expected and the experimental values of SABA yield.


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


Author(s):  
Jorge Alejandro TORRES-OCHOA ◽  
Nadia Renata OSORNIO-RUBIO ◽  
Orlando CORTAZAR-MARTINEZ ◽  
Victor Alfonso MORALES-NIETO

In this work, the process for the formulation of flexible polyurethane foam is presented following a design of experiments for mixtures. The proportion of polyol, diisocyanate, and crosslinker was considered as factors. The response variables considered were foaming time and reaction temperature. The result of the experiments showed that there is an area where the foam formulation is better. This zone is closed with 5% crosslinker, 50% polyol, and 45% diisocyanate, in this formulation denser foams with more uniform bubbles were obtained


2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


Sign in / Sign up

Export Citation Format

Share Document