The Design and Simulation of Circuit for Electromagnetic Force Assisted Line Heating Device

2013 ◽  
Vol 652-654 ◽  
pp. 2010-2018
Author(s):  
Ji Wang ◽  
Qiang Liu ◽  
Yu Jun Liu ◽  
Bing Shi ◽  
Ye Dong Bao ◽  
...  

In the process of line heating, a pulsed electromagnetic force is added to steel plates as an approximately consecutive constrained force of certain frequency. It improves the condition of steel plates heated at high temperatures and the efficiency of steel deformation and be conducive to the control of process and the improvement for the accuracy of deformation. According to the actual needs of electromagnetic force assisted line heating process, the design ideas of circuit for the electromagnetic force assisted line heating device (EFALHD) and functions of the branch circuits are introduced. The distribution of the electromagnetic force and parameters’ influence rules are analyzed by building magnetic field and circuit coupling model in ANSYS. By adding thermal analysis on the electromagnetic field analysis, a new method of line heating finite element analysis is established to support the parameter determinations of EFALHD.

2002 ◽  
Vol 46 (04) ◽  
pp. 229-238
Author(s):  
Jong Gye Shin ◽  
Jang Hyun Lee

The nature of a line heating process is very complex since a variety of factors affects the amount of residual deformation. A linear relationship between input and output parameters, which has been derived from simple experiments, is successively used. This relationship, however, is very limited since it does not include important parameters and the line heating process is not linear. A rigorous approach is presented here in an attempt to obtain new relationships between input parameters and final deformations during the line heating process. The residual deformations are investigated by using a thermal elastic-plastic analysis based on finite-element analysis (FEA). Experiments are carried out in order to verify the validity of the FEA results. The nondimensional input parameters are then determined by the dimensional analysis. The relationships between the input parameters and the residual deformations are developed by using multi-variate analysis (MVA) and multiple-regression methods. The final form of the relationships is nonlinear and includes relevant information.


2010 ◽  
Vol 638-642 ◽  
pp. 3555-3560 ◽  
Author(s):  
Keiji Ueda ◽  
Shinichi Suzuki ◽  
Shinji Mitao ◽  
Nobuo Shikanai ◽  
Takayuki Ito

High strength steel plates with 780MPa in tensile strength, suitable for building construction use, have been developed. The steel plates provide excellent combination of high strength, toughness, deformability and weldability. The key technology to obtain the excellent combination in mechanical properties of the steel is the microstructural control of M-A (martensite-austenite constituent) and the bainitic ferrite dual-phase structure, through the on-line heat treatment immediately after the accelerated cooling in Thermo-mechanical control process (TMCP). The developed steel plates have microstructure of fine M-A dispersed in the bainitic ferrite matrix. Basic metallurgical research revealed that the transformation behavior and microstructural morphologies were varied with the cooling stop temperature before the on-line heating, and the on-line heating temperature itself. Trial production of the developed 780MPa grade steel plates was also carried out with the plate mill. The obtained plates showed the satisfactory combination of high strength, low yield ratio, toughness.


2001 ◽  
Vol 17 (01) ◽  
pp. 1-7
Author(s):  
Seung Il Seo ◽  
Yoon Ho Yang ◽  
Chang Doo Jang

The line heating process has been used to create curved surfaces of ship structures. However, because it depends on a worker's skill and experience, it has been a factor in preventing the automation of shipyards and in consuming labor costs. In this paper, to reduce the trial-and-error procedure of line heating work by simulating the deforming process of a plate, a finite-element analysis method is proposed. A new element, called the line heating element, is defined and applied. The line heating element is assumed to have orthotropic material property. Shrinkage forces and moments resulting from line heating are obtained by integration of inherent strains formed by local heating and cooling. The shrinkage forces and moments at the inherent strain region are converted to equivalent nodal forces by the energy principle. Results calculated using the line heating element show good agreement with the results obtained by the commercial finite-element analysis code.


2014 ◽  
Vol 30 (03) ◽  
pp. 142-151
Author(s):  
Bo Zhou ◽  
Xiaoshuang Han ◽  
Soon-Keat Tan ◽  
Zhong-chi Liu

With increasingly competition in the world shipbuilding market, manual and experiential technique patterns of line heating process could not meet the requirements of modern shipbuilding in product speed and quality. In recent years, the improvement of productivity for line-heating process is one of the goals in the shipbuilding industry, which means an accurate prediction model is very important. In this study, a finite element analysis (FEA) model for the line-heating process was established and experiments were conducted to prove the validity of the model. The final numerical results are in good agreement with experiment results. Based on the FEA model, the feasibility of the multiple-torch process is verified. The multiple-torch process could greatly save processing time, which is entirely feasible in the specific automation implementation. Finally, the effect of heat line spacing is analyzed, which could provide important information for the line-heating process design. The proposed method presents a valuable reference for the study of the similar thermal process.


2000 ◽  
Vol 16 (02) ◽  
pp. 121-132
Author(s):  
Morinobu Ishiyama ◽  
Yoshihiko Tango

Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI) has successfully employed the logic of the Finite Element Method on the principle of Thermal Forming or Line Heating, which facilitates use of computer aided, fully automated line heating machines for forming any curvature precisely and efficiently on a hull steel plate in the shipbuilding process. It is undesirable for the future in line heating that only an experienced technician is able to be skilled in the use of existing line heating f1 or steel plate forming. Accuracy of shape formed by existing line heating is not necessarily well controlled and work at succeeding stages is adversely affected by inaccurate interim products, though it is a very useful method informing steel plates and all apparatus required for line heating is just light tools. The IHI-Advanced Line-heating Process for Hull-steel Assembly (IHI-ALPHA) has succeeded in solving these problems.


2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


2012 ◽  
Vol 516-517 ◽  
pp. 1517-1520
Author(s):  
Jian Xun Hu ◽  
Gong Da Zhang ◽  
Hong Yu Zhang ◽  
Xiao Qin Zhang

Using the finite element analysis, this work analyzed the electric field distribution of 220kV transmission steel tower with double-circuit and composite material transmission tower with the same size, and compared the electric field effect of two materials transmission tower for surroundings. And this work compared the vertical and axial electric field distribution along transmission line of the two materials transmission tower. The results indicate the composite material tower can improve the environment of electric field near the transmission lines.


2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


2011 ◽  
Vol 421 ◽  
pp. 250-253
Author(s):  
Hu Zhu ◽  
Xiao Guang Yang

To lay the foundation of the automation for line heating forming, a method for heating path generation and simulation for ship plate steel base on STL mode was proposed in this paper. The line heating path was generated by slicing the STL model of the steel plate using a series of planes, and the models of the heating equipment of ship plate steel were build, and the heating process of ship plate steel can be simulated by inputting the models of the heating equipment into the simulation system that was built by using VC++ and OpenGL. The case study shows that the method can primely solve the inconvenient of manual heating and the whole heating process can be observed by the simulation so that the heating process can be made a reasonable monitoring, and the heating path generation and simulation software are runs stably and reliably.


Sign in / Sign up

Export Citation Format

Share Document