Sol-Gel Derived TiO2 Coating on Hydrothermally Roughened NiTi Alloy

2013 ◽  
Vol 668 ◽  
pp. 830-834
Author(s):  
Bing Hui Dong ◽  
Chen Zhang ◽  
Zafer Alajmi ◽  
Ke Yong Wang ◽  
Tao Fu

Nearly equiatomic NiTi alloy is hydrothermally treated in a urea solution at 150°C to form nanostructures at the surface, with the aim to improve the structural quality of sol-gel deposited TiO2 film. Nanosheets film of ammonium titanate is formed on NiTi alloy after 8 h hydrothermal treatment, and the sol-gel TiO2 film on it is smooth and crack-free. Anatase TiO2 films consisting of nanoparticles and granular deposits are formed on the NiTi samples hydrothermally treated for 16 h and 24 h. The subsequently deposited TiO2 films have short cracks, because the nanostructured films can not completely balance volume shrinkage of the gel film during the drying and heat treatment processes. Water contact angles of the duplex treated NiTi samples increase during ageing in air, but are all reduced to below 10 after 2 h UV irradiation treatment. Potentiodynamic polarization tests in 0.9% NaCl solution indicate that the duplex treated NiTi samples have much better corrosion resistance than the polished one.

2021 ◽  
Vol 11 (22) ◽  
pp. 11044
Author(s):  
Violeta Purcar ◽  
Valentin Rădițoiu ◽  
Alina Rădițoiu ◽  
Florentina Monica Raduly ◽  
Georgiana Cornelia Ispas ◽  
...  

In this research, we report a simple and inexpensive way to prepare transparent and hydrophobic hybrid coatings through deposition of different silica materials on polyvinyl chloride (PVC) substrates. The silica materials were prepared using an acid-catalyzed sol–gel method at room temperature (25 ± 2 °C), using alkoxysilanes: tetraethoxysilane (TEOS), as the silica source, and ethoxydimethylvinylsilane (DMVES), triethoxyoctylsilane (OTES), and trimethoxyhexadecylsilane (HDTMES), as modifier agents. The obtained materials were characterized (either as powders or as thin films) by Fourier-transform infrared spectroscopy (FTIR), UV/Vis spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and water contact-angle measurements. UV/Vis spectra showed that the PVC substrate coated with the silica material containing TEOS/DMVES/OTES had a transmittance of about 90% in the wavelength range of 650–780 nm. The water contact angles increased from 83° for uncoated PVC substrate to ~94° for PVC substrates coated with the sol–gel silica materials. These PVC films with hybrid silica coatings can be used as the materials for outdoor applications, such as energy-generating solar panel window blinds or PVC clear Windmaster outdoor blinds.


2010 ◽  
Vol 150-151 ◽  
pp. 1484-1487 ◽  
Author(s):  
Tao Lin ◽  
Xiang Chao Zhang

Titanium dioxide thin film has been successfully synthesized deposited on ITO glass substrates by the sol–gel dip-coating method using freeze drying technique. The precursor and TiO2 film were characterized using XRD, AFM and UV-vis absorption spectra analysis technologies. The XRD result demonstrates that the TiO2 film is well crystallized and consists of anatase phase only with (101) plane. The morphology of the nanoparticles of TiO2 thin film is spherical shape with grain size of 30.1 nm in average diameter and the surface of the TiO2 film is smooth. There is a strong wide UV absorption band around 387 nm and the calculated band gap (Eg) value of the TiO2 thin film is about 3.18 eV. The water contact angles for the thin film was only about 12°. The freeze drying-assisted sol-gel technique offers a novel process route in treating hydrophilic glasses for self-cleaning building materials and would be widely application for building energy saving.


2012 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Nazanin Farhadyar ◽  
Mirabdullah Seyed Sadjadi

In this paper, we report preparation of hydrophilic hybrid nanocomposite coatings on glass substrates using Zinc acetate solutions based on 3-glycidoxypropyltrimethoxysilane (GPTMS), epoxy resin, aromatic amine (HY850), polyethylene glycol (PEG) and surfactant (polyoxyethylene(4)laurylether) by the sol-gel process. Furthermore, the effects of PEG addition to the precursor solutions on the hydrophilic property and microstructure of the resultant coating film were studied. The hydrophilic behavior study of the synthesized hybrid was performed by adding different amounts of polyethylene glycol precursor to the hybrid solution. Experimental results show that, among different amounts of PEGs, the best results are obtained by addition of PEGs (400) to the hybrid solution which can decrease the water contact angles down to 16 and using surfactant down to 0, and increase the free surface energy. Coated glass exhibits a higher strength than uncoated glass. Attenuated total reflectance infrared spectroscopic (ATR-IR) technique was used to characterize the structure of the hybrid films. The chemical structure of obtained network affects morphology of the coating. The morphology of the hybrid coatings was examined by transmission electron microscopy (TEM). The hybrid systems have a unit form structure and the inorganic phases were in the nanosize scale,


2009 ◽  
Vol 620-622 ◽  
pp. 695-698
Author(s):  
Jing Ma ◽  
Wen Xiu Liu ◽  
Xiao Guang Qu ◽  
Dan Ni Yu ◽  
Wen Bin Cao

TiO2 thin film was prepared on soda lime glass by hydrolysis of Ti(OC4H9)4 in alcoholic solutions by sol-gel method combined with spin-coating and calcination different temperatures. Prepared samples were characterized by XRD, FESEM, and measurement of contact angles and transmittance. XRD identification reveals that the films are composed of anatase TiO2 when the annealing temperature was set at 450~550 oC. SiO2 layer was coated on the surface of the glass firstly to barrier the diffusing of sodium ions from the substrate. Light-induced superhydrophilicity of the TiO2 thin film has been investigated. To increase the illumination light intensity will decrease the water contact angle. The superhydrophilicity of the TiO2 thin film will disappear more slowly in the dark than that in the field of ultrasound.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1393 ◽  
Author(s):  
Qing Wang ◽  
Jieyi Xiong ◽  
Guangxue Chen ◽  
Ouyang Xinping ◽  
Zhaohui Yu ◽  
...  

Papers with nanoscaled surface roughness and hydrophobically modification have been widely used in daily life. However, the relatively complex preparation process, high costs and harmful compounds have largely limited their applications. This research aims to fabricate superhydrophobic papers with low cost and nontoxic materials. The surface of cellulose fibers was initially coated with a film of SiO2 nanoparticles via sol-gel process. After papermaking and subsequent modification with hexadecyltrimethoxysilane through a simple solution-immersion process, the paper showed excellent superhydrophobic properties, with water contact angles (WCA) larger than 150°. Moreover, the prepared paper also showed superior mechanical durability against 10 times of deformation. The whole preparation process was carried out in a mild environment, with no intricate instruments or toxic chemicals, which has the potential of large-scale industrial production and application.


2013 ◽  
Vol 20 (06) ◽  
pp. 1350064 ◽  
Author(s):  
XUE-WEI WANG ◽  
CUI GUO ◽  
ZHI-HAO YUAN

Superhydrophobic cotton fabrics are prepared using silica and titania hybrid sol and hexadecyltrimethoxysilane. The surface morphology of cotton fabrics is characterized by scanning electron microscopy. The water contact angles on the as-prepared superhydrophobic cotton fabrics is 159° when the volume ratio between sodium silicate solution and titania sol is 1:3, and the corresponding cotton fabrics can keep the contact angle of 152° after 10 cycles of home machine washing. Meanwhile the treated cotton fabrics can also keep superhydrophobicity after 60 min of UV light irradiation. These results indicate that the cotton fabrics treated with silica and titania hybrid sol and modified with hexadecyltrimethoxysilane show excellent superhydrophobic stability under washing and UV light irradiation. This paper provides the new notion and beneficial reference for the application of the superhydrophobic cotton fabrics in the future.


2005 ◽  
Vol 901 ◽  
Author(s):  
Phani Ratna Ayalasomayajula ◽  
S. Santucci

AbstractDevelopment of UV blocking thin films with effective cut-off features with steep edges and high transmission in the visible and IR region have been developed. The unique optical, mechanical and chemical properties of silica and ceria nanocomposites with surface functional groups making them most promising candidate for applications in opto-electronic, automotive, and aeronautic industries. On the other hand, highly hydro and oleophobic films are being actively considered in optical, automotive and aeronautic industries to increase adhesion and scratch, abrasion resistance properties. In order to fill the gap, and fulfill the requirements to meet both ends, it could be proved that morphological changes in the nanometer range influences the water contact angles and their hystersis of low energy materials. Nanocomposite films of SiO2 and CeO2 with surface functionalisation with decafluorooctly-triethoxy silane itself forms nano-hemispheres (similar to lotus leaf) at and above 100°C favoring an increase in water contact angle from 122° (25°C) to 145°(400°C). The structural, optical, and hydrophobic properties have been examined by employing X-ray diffraction, UV-visible spectroscopy, contact angle techniques, respectively. The cut-off behavior of the deposited and annealed nanocomposite thin films have been tuned by varying different amounts of CeO2 in SiO2.


Rare Metals ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Bing-Hui Dong ◽  
Feng Wu ◽  
Zafer Alajmi ◽  
Chen Zhang ◽  
Tao Fu ◽  
...  
Keyword(s):  
Sol Gel ◽  

2014 ◽  
Vol 40 (8) ◽  
pp. 12423-12429 ◽  
Author(s):  
Tao Fu ◽  
Yaogen Shen ◽  
Zafer Alajmi ◽  
Yuning Wang ◽  
Shuiyun Yang ◽  
...  
Keyword(s):  
Sol Gel ◽  

2012 ◽  
Vol 512-515 ◽  
pp. 1032-1035 ◽  
Author(s):  
Ya Wei Hu ◽  
Hui Rong He ◽  
Yang Min Ma

Nano-structured TiO2 coating was constructed through sol-gel process and dip-coating method on the stainless steel surface using tetra-n-butyl titanate as precursor. The phase and the crystallographic structure of the TiO2 coating were characterized by an X-ray diffractometer (XRD), and the surface topography and structures of the TiO2 coating were characterized by a scanning electron microscope (SEM). The superhydrophobic property of the TiO2 coating modified with the fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3) was characterized by the water contact angles. It was observed that the TiO2 coating showed superhydrophobicity with water contact angle 155.3° after modifying with FAS, and the superhydrophobicity was corrosion-resistance.


Sign in / Sign up

Export Citation Format

Share Document