Fracture Performance of Asphalt Mixture with Styrene Butadiene Styrene Based on the J-Integral

2013 ◽  
Vol 671-674 ◽  
pp. 1202-1207
Author(s):  
Ping Li ◽  
Jun Jun Pei ◽  
Yu Yao ◽  
Guo Wei Sun

Crack of asphalt pavement is one of the major destruction in pavement engineering. The bending test of small beam at low-temperature is often applied to evaluate the resisting crack for asphalt mixture. In this paper, based on J-integral theory in elastic-plastic fracture mechanics, performance of resisting crack of asphalt mixtures is analyzed in cases of different temperatures and contents of Styrene Butadiene Styrene (SBS) by bending tests of small beam. It is shown that the optimal condition for anti-cracking of asphalt mixtures is SBS contents of 4.2%~5.0% at 10°C using flexural tensile strain and stiffness modulus and the highest flexural tensile strengths of mixture occur at 0°C. Ductile fracture toughness of mixture with SBS modifier may be more sensitive to temperature from -10°C to 0°C and may be more useful to analysis elastic-plastic formation energy and energy releasing rate of asphalt mixture.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1804
Author(s):  
Wensheng Wang ◽  
Guojin Tan ◽  
Chunyu Liang ◽  
Yong Wang ◽  
Yongchun Cheng

This study aims to study the viscoelastic properties of asphalt mixtures incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber under freeze–thaw (F-T) cycles by using the static creep test. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0 to 21 F-T cycles processing, a uniaxial compression static creep test for the asphalt mixture specimens was performed to evaluate the influence of F-T cycles. The results indicated that the F-T cycles caused a larger creep deformation in the asphalt mixtures, which led to a decrease in the rut resistance of the asphalt mixtures incorporating SBS polymer and basalt fiber. Besides, the resistance to deformation decreased significantly in the early stage of F-T cycles. On the other hand, the viscoelastic parameters were analyzed to discuss the variation of viscoelastic characteristics. The relaxation time increased with F-T cycles, which will not be conducive to internal stress dissipation. Compared with lignin fiber, basalt fiber can improve the resistance to high-temperature deformation and the low-temperature crack resistance of asphalt mixtures under F-T cycles.


2017 ◽  
Vol 50 (3) ◽  
pp. 256-275 ◽  
Author(s):  
Mahdi Delaviz Bayekolaei ◽  
Koorosh Naderi ◽  
Fereidoon Moghadas Nejad

In recent years, the use of nano materials for improving various mechanical and performance-related properties of polymer-modified asphalt binders has been growing rapidly. However, few researches investigated the effects of base binder and styrene–butadiene–styrene (SBS) structure on rutting resistance of polymer-nanocomposite-modified asphalt mixtures. This study investigated the effect of polymer–nanocomposite modification, using two different penetration grade asphalt binders and two types of SBS, on rutting properties of asphalt mixtures. Rheological properties of modified binders, Marshall stability, resilient modulus, and rut depth in wheel-tracking tests were used to evaluate the rutting performance of the modified binders and mixtures. The results indicated that both base binder type and SBS structure had significant effect on rutting resistance of polymer-nanocomposite-modified asphalt mixtures.


2019 ◽  
Vol 22 (2) ◽  
pp. 94-101
Author(s):  
Miran Bahyam Ahmed ◽  
Alaa Hussein Abed ◽  
Yasir Mawla Hammood Al-Badran

Open-graded-fraction-course (OGFC), is a hot asphalt mixture usually utilized as a private purpose wearing course, because of open graded asphalt mixture and aggregates skeleton (stone-on-stone) contact, it contain a relatively high air voids’ percentage, after compaction which are permeable to water. In this research one type of gradation was used (12.5 mm) NMAS, to preparing the OGFC asphalt mixtures, penetration grade 40/50, crushed aggregate, asphalt content prepared with 4 % and up to 6 % by weight of mixture with 0.5 % increments. Optimum asphalt content (OAC) was selected based on these criteria, air voids content, asphalt draindown, permeability, and abrasion resistance (aged and un-aged) condition. The mix performance had been investigated by indirect tensile strength and moisture susceptibility (sensitivity) measured according to the (AASHTO T283-14). Results illustrate that the increasing of asphalt binder content leads to a decrease of the air voids content, abrasion loss and permeability values, while draindown increase, conversely, the indirect tensile strength (ITS) had been significantly increased for both conditions and this is a gaod suggestion to resistance alongside moisture susceptibility. It can be decided that the increasing of asphalt  binder percent in OGFC asphalt mixture, leads to an increase in the thickness of binder coating around the aggregates. On the other hand, the influence of modifier that prepared with 4% styrene-butadiene-styrene (SBS) on OGFC asphalt mixture tends to improve the mix properties and exhibit higher (TSR) as compared with original asphalt by (31, 27.7 and 24.4) % at asphalt percent (4.8, 5.3 and 5.8) %, respectively. The SBS improved the adhesion between aggregate and asphalt which leads to reduce stripping of HMA, horizontal deformation, and increased the tensile stiffness modulus value.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1698
Author(s):  
Guojin Tan ◽  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Yong Wang ◽  
Zhiqing Zhu

This study aims to study the freeze–thaw (F–T) resistance of asphalt mixture incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber by using the established complex master curves of the generalized Sigmoidal model. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0–21 F–T cycles processing, a complex modulus test asphalt mixture specimen was performed to evaluate the influence of the F–T cycle. Besides, according to the time–temperature superposition principle, the master curves of a complex modulus were constructed to reflect the dynamic mechanical response in an extended range of reduced frequency at an arbitrary temperature. The results indicated that the elastic and viscous portions of asphalt mixture incorporating SBS and basalt fiber have decreased overall. It could be observed from the dynamic modulus ratio that the dynamic modulus ratios of specimens were more affected by the F–T cycle at low frequency or high temperature. Thus, in the process of asphalt pavement design and maintenance, attention should be paid to seasonal frozen asphalt pavement under low frequency and high temperature.


Sign in / Sign up

Export Citation Format

Share Document